Name the property of equality the statement illustrates.

1. **Segment Add. Post.** If \(A, B, \) and \(C \) are collinear, then \(AC = AB + BC \).
2. **Transitive** \(m\angle 4 = m\angle 8 \) and \(m\angle 8 = m\angle 10 \), then \(m\angle 4 = m\angle 10 \).
3. **Symmetric** \(GE = OM \), then \(OM = GE \).
4. **Subtr.** If \(AB = CD \), then \(AB - EF = CD - EF \).
5. **Symmetric** If \(WX = YZ \), then \(YZ = WX \).
6. **Trans** If \(m\angle D = m\angle E \) and \(m\angle E = 45^\circ \), then \(m\angle D = 45^\circ \).

Use the property to complete the statement.

7. Reflexive Property of Angle Measure: \(m\angle C = \boxed{m\angle C} \)

8. Transitive Property of Equality: If \(CD = GH \) and \(GH = RS \), then \(CD = RS \)

9. Addition Property of Equality: If \(x = 5 \), then \(14 + x = \boxed{19} \)

10. Symmetric Property of Equality: If \(BC = RL \), then \(RL = BC \)

11. Substitution Property of Equality: If \(m\angle B = 15^\circ \), then \(3(m\angle B) = \boxed{45^\circ} \)

Solve the equation. Write a reason for each step.

12. \(3x + 8 = 14 \)
 \[3x = 6 \] **Subtr.**
 \[x = 2 \] **Div.**

13. \(-12x = 28 - 16x \)
 \[4x = 28 \] **Add**
 \[x = 7 \] **Div.**

14. \(7(x - 11) = 12x - 122 \)
 \[7x - 77 = 12x - 122 \] **Distr.**
 \[7x + 45 = 12x \] **Add**
 \[45 = 5x \] **Subtr.**
 \[9 = x \] **Div.**
 \[x = 9 \] **Symm.**
Complete the logical argument by giving a reason for each step.

1. \(AB = BC \)
 \[
 \begin{align*}
 AC &= AB + BC \\
 \downarrow & \\
 AC &= AB + AB

 AC &= 2(AB)

 \end{align*}

 Given

 a. Seg. Add. Post. \\
 b. Subst. \\
 c. Simplify.

2. Given: \(AC = 36, AB = 3x, \) and \(2x + 1 = BC \)
 \[
 \begin{align*}
 AC &= 36, AB = 3x, \text{ and } 2x + 1 = BC \\
 AB + BC &= AC \\
 3x + 2x + 1 &= 36 \\
 5x + 1 &= 36 \\
 5x &= 35 \\
 x &= 7

 \end{align*}

 a. Given \\
 b. Seg. Add. Post. \\
 c. Subst. \\
 d. Simplify. \\
 e. Subtr. \\
 f. Div.

3. Given \(AD = AB, DC = CB \)
 Show that the perimeter of \(\triangle ABC \) is equal to the perimeter of \(\triangle ABD \).
 \[
 \begin{align*}
 AD &= AB, DC = CB \\
 AC &= AC \\
 AD + DC + AC &= AB + CB + AC

 \end{align*}

 a. Given \\
 b. Reflexive \\
 c. Add.