Chapter 1 – Essentials of Geometry

In this chapter we address three **Big IDEAS**:

1) Describing geometric figures

2) Measuring geometric figures

3) Understanding equality and congruence

Warm Up:

Key Vocab:

Undefined Terms				
A basi	c figure that is not defined in terms of	·		
Point	An undefined term in geometry Has dimension –	Ą		
Line	An undefined term in geometry Has dimension –	S T <i>m</i> → · · · · · · · · · · · · · · · · · · ·		
Plane	An undefined term in geometry Has dimensions –	$E \bullet G \mathcal{R}$		

Defined Terms			
Terms that	t can be described using other figures such a	s or	
Collinear Points	Points that lie on the		
Coplanar Points	Points that lie in the		
Line Segment		С В	
Ray		A B	
Opposite Rays		$\overrightarrow{SR} \text{ and } \overrightarrow{ST} \text{ are } _$	
Intersection			

Show:

Ex 1:

- a. Give two other names for \overrightarrow{BD} .
- b. Give another name for plane *T*.
- c. Name three points that are collinear.
- d. Name four points that are coplanar.

Ex 2:

- a. Give another name for \overline{PR} .
- b. Name all rays with endpoint *Q*. Which of these rays are opposite rays?

LESSON 1.1 **Practice A**

In Exercises 1–8, use the diagram.

- **1.** Give two other names for \overrightarrow{AB} .
- 2. Name three points that are collinear.
- **3.** Give another name for plane *F*.
- 4. Name a point that is not coplanar with *A*, *B*, and *C*.
- **5.** Give another name for \overline{CD} .
- 6. Name three rays with endpoint *B*.
- 7. Name a pair of opposite rays.
- **8.** Give another name for CD.

Sketch the figure described.

9. Three points that are collinear

10. Four points that are coplanar

- **11.** Three lines that intersect at one point
- **12.** A line and a plane that intersect at one point

In Exercises 13–20, use the diagram.

- **13.** Are points *J*, *K*, and *L* collinear?
- **14.** Are points *J*, *K*, and *L* coplanar?
- **15.** Are points *J*, *K*, and *M* collinear?
- **16.** Are points *J*, *K*, and *M* coplanar?
- 17. Name the intersection of \overrightarrow{KL} and \overrightarrow{PQ} .
- **18.** Name the intersection of \overrightarrow{PQ} and plane *KMN*.
- **19.** Name the intersection of plane *R* and plane *S*.
- **20.** Name three pairs of opposite rays.

Section:	1 – 2 Use Segments and Congruence
Essential Question	

Warm Up:

A B C A C A C A C A C A A B C A A A A A
e segments that have the A B C D • + • • • • • • • • • • • • • • • • • •

Postulates:

Segment Addition Postulate				
TÊ	then	AC		
11	then			
		A B C		
If	then			
		AB BC		

Show:

Ex 1: The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Bismarck to Fargo.

Ex 2: Find *CD*.

Ex 3: Graph the points X(-2, -5), Y(-2, 3), W(-4, 3), and Z(4, 3) in a coordinate plane. Are \overline{XY} and \overline{WZ} congruent?

Ex 4: Find the value of *x*. Then find *MN*.

Find the indicated length.

Plot the given points in a coordinate plane. Then determine whether the line segments named are congruent.

7. $A(2, 2), B(2, -1), C(0, -2), D(3, -2); \overline{AB}$ and \overline{CD}

Plot the given points in a coordinate plane. Then determine whether the line segments named are congruent.

8. $E(-3, 2), F(1, 2), G(2, 3), H(2, -2); \overline{EF}$ and \overline{GH}

Use the number line to find the indicated distance.

In the diagram, points P, Q, R, and S are collinear, PS = 46, PR = 18, and PQ = QR. Find the indicated length.

Find the indicated length.

Section:	1-3 Use Midpoint and Distance Formulas
Essential Question	

Warm Up:

Key Vocab:

Midpoint	The point that divides the segment into	A M B o + o + o
Segment Bisector	that intersects the segment at its	

Key Concepts:

Distance Formula			
If	then		
$A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a	the distance between A and B is		
coordinate plane,			
$A(x_1, y_1) \bullet [-] x$	$ \begin{array}{c} B(x_{2}, y_{2}) \\ y_{2} - y_{1} \\ \hline c(x_{2}, y_{1}) \\ \hline x \end{array} $		

Show:

Ex 1: The figure shows a gate with diagonal braces. \overline{MO} bisects \overline{NP} at Q. If PQ=22.6 in., find PN.

Ex 2: Point *S* is the midpoint of \overline{RT} . Find *ST*.

Ex 3: Find *PQ* given the coordinates for its endpoints are P(2,5) and Q(-4,8). Approximate answer to the nearest hundredth.

Ex 4: The endpoints of \overline{GH} are G(7, -2) and H(-5, -6). Find the coordinates of the midpoint *P*.

Lesson 1.3 Practice A

Line *l* bisects the segment. Find the indicated length.

1. Find AC if AB = 6 cm.

2. Find DF if DE = 17 cm.

3. Find *ST* if RT = 109 in.

4. Line *CD* bisects \overline{AB} at point *C*. Find *AC* if AB = 56 feet.

In each diagrams, *M* is the midpoint of the segment. Find the indicated length.

5. Find *XM*.

6. Find *MF*.

$$7x-6$$
 $5x$
E M F

In each diagrams, *M* is the midpoint of the segment. Find the indicated length.

7. Find *MH*.

8. Find *JK*.

	6 <i>x</i> + 11		9 <i>x</i> – 13	
-				-•
J		Μ		Κ

9. Find *LN*.

	11 <i>x</i> – 21		8x -	+ 15	
-					-
L		М			Ν

10. Find *PQ*.

Find the coordinates of the midpoint of the segment with the given endpoints.

11. *R*(3, 1) and *S*(3, 7)

12. *V*(2, 4) and *W*(6, 6)

Find the length of the segment. Round to the nearest tenth of a unit.

13.

15. Find the length of the segment. Then find the coordinate of the midpoint of the segment.

Section:	1 – 4 Measure and Classify Angles
Essential Question	

Warm Up:

Key Vocab:

Angle	Notation:	B
Sides	Notation:	A C
Vertex		
Congruent Angles		AB

Angle Bisector	A ray that divides an angle into	Y
----------------	----------------------------------	---

Classifying Angles		
Acute Angle	A	
Right Angle		
Obtuse Angle	A	
Straight Angle	▲ Å	

Postulate:

Angle Addition Postulate		
		-
If <i>P</i> is in the interior of $\angle RST$,	Then	R m∢RST S m∢RST P T

Show:

Ex 1: Name each angle that has N as a vertex.

Ex 2: Use the diagram to find the measure of each angle and classify the angle.

Ex 3: If $m \angle XYZ = 72^{\circ}$, find $m \angle XYW$ and $m \angle ZYW$.

LESSON 1.4 **Practice A**

Write three names for the angle shown. Then name the vertex and sides of the angle.

Classify the angle with the given measure as *acute*, *obtuse*, *right*, or *straight*

- **4.** $m \angle A = 115^{\circ}$
- **5.** $m \angle A = 85^{\circ}$
- **6.** $m \angle A = 90^{\circ}$ _____
- **7.** $m \angle A = 170^{\circ}$

Use a protractor to find the measure of the given angle. Then classify the angle as *acute, obtuse, right,* or *straight*

- **8.** *DFE*
- **9.** ∠*AFB*
- **10.** ∠*CFE*
- **11.** ∠*AFE*

Find the indicated angle measure.

Use the given information to find the indicated angle measure.

15. Given $m \angle ADC = 135^{\circ}$, find $m \angle BDC$.

16. Given $m \angle NRQ = 78^\circ$, find $m \angle PRQ$.

Given that \overrightarrow{XZ} bisects $\angle WXY$, find the two angle measures not given in the diagram.

Given that \overrightarrow{BD} bisects $\angle ABC$, find the $m \angle ABD$ and $m \angle CBD$.

20.

Section:	1 – 5 Describe Angle Pair Relationships
Essential Question	

Warm Up:

Key Vocab:

Complementary Angles		Adjacent Non-adjacent
Supplementary Angles		Adjacent Non-adjacent
Adjacent Angles	Two angles that share a common , but have no common interior points	
Linear Pair		
Vertical Angles	Two angles whose sides form two pairs of Examples:	

Show:

Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.

Supplementary Angles:	Complementary Angles:	Adjacent Angles:

Ex 2: a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1 = 17^{\circ}$, find $m \angle 2$.

b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3 = 119^\circ$, find $m \angle 4$.

Ex 3: Two roads intersect to form supplementary angles, $\angle XYW$ and $\angle WYZ$. Find $m\angle XYW$ and $m\angle WYZ$.

Ex 4: Identify all of the linear pairs and all of the vertical angles in the figure.

Ex 5: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

Ex 6: The measure of one angle is 7 times the measure of its complement. Find the measure of each angle.

LESSON 1.5 **Practice A**

Tell whether the indicated angles are adjacent.

1. $\angle BAC$ and $\angle CAD$ **2.** $\angle EFG$ and $\angle HGF$ **3.** $\angle JNM$ and $\angle LNK$ **4.** $\bigvee_{K \in G}$ **5.** $\bigvee_{K \in G}$ **6.** $\bigvee_{K \in G}$

Name a pair of complementary angles and a pair of supplementary angles.

 $\angle 1$ and $\angle 2$ are complementary angles. Given the $m \angle 1$, find $m \angle 2$.

6. $m \angle 1 = 52^{\circ}$ **7.** $m \angle 1 = 76^{\circ}$ **8.** $m \angle 1 = 19^{\circ}$ **9.** $m \angle 1 = 63^{\circ}$

 $\angle 1$ and $\angle 2$ are supplementary angles. Given the $m \angle 1$, find $m \angle 2$.

10. $m \angle 1 = 147^{\circ}$ **11.** $m \angle 1 = 94^{\circ}$ **12.** $m \angle 1 = 38^{\circ}$ **13.** $m \angle 1 = 121^{\circ}$

Find the value of *x*.

Tell whether the angles are vertical angles, a linear pair, or neither.

- **17.** $\angle 1$ and $\angle 2$
- **18.** $\angle 1$ and $\angle 3$
- **19.** $\angle 2$ and $\angle 4$
- **20.** $\angle 3$ and $\angle 4$
- **21.** $\angle 5$ and $\angle 6$
- **22.** $\angle 5$ and $\angle 7$
- **23.** $\angle 6$ and $\angle 8$
- **24.** $\angle 7$ and $\angle 8$

Find the values of *x* and *y*.

$$\angle A \text{ and } \angle B \text{ are complementary. Find } m \angle A \text{ and } m \angle B$$
28. $m \angle A = x^{\circ}$
 $m \angle B = (x - 30)^{\circ}$
29. $m \angle A = (5x + 4)^{\circ}$
 $m \angle B = (7x - 10)^{\circ}$

30.
$$m \angle A = (4x - 2)^{\circ}$$

 $m \angle B = (11x + 17)^{\circ}$
31. $m \angle A = (6x - 9)^{\circ}$
 $m \angle B = (8x + 1)^{\circ}$

 $\angle A$ and $\angle B$ are supplementary. Find $m \angle A$ and $m \angle B$

32.
$$m \angle A = x^{\circ}$$

 $m \angle B = 3x^{\circ}$
33. $m \angle A = (7x - 3)^{\circ}$
 $m \angle B = (x - 1)^{\circ}$

Section:	1-6	Classify Polygons
Essential Question		

Warm Up:

Key Vocab:

Polygon	each side intersects exactly, so that no two sides with a common endpoint are collinear	B D
Sides	Each segment that forms a polygon	A E Sides:
Vertex	Each of a side of a polygon	Vertices:
Convex	A polygon where no line containing a side of the polygon contains a of the polygon	interior

Concave	A polygon with one or more interior angles measuring	
n-gon		Example:
Equilateral	A polygon with all of its congruent	~~~
Equiangular	A polygon with all of its congruent	E.J
Degular	A polygon that has	

Show:

a.

Ex 1: Tell whether each figure is a polygon. If it is, tell whether it is concave or convex.

Ex 2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.

Ex 3: A rack for billiard balls is shaped like an equilateral triangle. Find the length of a side.

LESSON 1.6 **Practice A**

Tell whether the figure is a polygon. If it is not, *explain* why. If it is a polygon, tell whether it is *convex or concave*.

Classify the polygon by the number of sides. Tell whether the polygon is *equilateral, equiangular*, or *regular*. *Explain your* reasoning.

Each figure is a <u>REGULAR</u> polygon. Expressions are given for two side lengths. Find the value of *x*.

