CHAPTER 1 - EsSEntials of GEOMETRy

In this chapter we address three Big IDEAS:

1) Describing geometric figures
2) Measuring geometric figures
3) Understanding equality and congruence

Section:	$\mathbf{1 - 1}$ Identify Points, Lines, and Planes
Essential Question	

Warm Up:
\square

Key Vocab:

Undefined Terms		
A basic figure that is not defined in terms of		
Point	An undefined term in geometry Has \qquad dimension - \qquad \qquad \qquad	A
Line	An undefined term in geometry Has \qquad dimension - \qquad	
Plane	An undefined term in geometry Has \qquad dimensions - \qquad \qquad \qquad	or

Show:

Ex 1:
a. Give two other names for $\overleftrightarrow{B D}$.
b. Give another name for plane T.
c. Name three points that are collinear.
d. Name four points that are coplanar.

Ex 2:

a. Give another name for $\overline{P R}$.
b. Name all rays with endpoint Q. Which of these rays are opposite rays?

LESSON 1.1

Practice A

In Exercises 1-8, use the diagram.

1. Give two other names for $\overleftrightarrow{A B}$.
2. Name three points that are collinear.
3. Give another name for plane F.
4. Name a point that is not coplanar with A, B, and C.
5. Give another name for $\overline{C D}$.

6. Name three rays with endpoint B.
7. Name a pair of opposite rays.
8. Give another name for $\overrightarrow{C D}$.

Sketch the figure described.

9. Three points that are collinear
10. Three lines that intersect at one point
11. Four points that are coplanar
12. A line and a plane that intersect at one point

In Exercises 13-20, use the diagram.
13. Are points J, K, and L collinear?
14. Are points J, K, and L coplanar?
15. Are points J, K, and M collinear?
16. Are points J, K, and M coplanar?
17. Name the intersection of $\overleftrightarrow{K L}$ and $\overleftrightarrow{P Q}$.

18. Name the intersection of $\overleftrightarrow{P Q}$ and plane $K M N$.
19. Name the intersection of plane R and plane S.
20. Name three pairs of opposite rays.

Section:	$\mathbf{1 - 2}$ Use Segments and Congruence
Essential Question	

Warm Up:
\square
Key Vocab:

Postulates:

Ruler Postulate	
Allows for the creation of a measuring system.	
The real number that corresponds to a point is the	
The distance between points A and B, is the \qquad \qquad	

Segment Addition Postulate			
If	then	Then	
If			

Show:

Ex 1: The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Bismarck to Fargo.

Ex 2: Find $C D$.

Ex 3: Graph the points $X(-2,-5), Y(-2,3), W(-4,3)$, and $Z(4,3)$ in a coordinate plane. Are $\overline{X Y}$ and $\overline{W Z}$ congruent?

Ex 4: Find the value of x. Then find $M N$.

Find the indicated length.

1. Find $G J$.

2. Find $N Q$.

3. Find $K M$.

4. Find $S T$.

5. Find $X Y$.

Plot the given points in a coordinate plane. Then determine whether the line segments named are congruent.
7. $A(2,2), B(2,-1), C(0,-2), D(3,-2) ; \overline{A B}$ and $\overline{C D}$

Plot the given points in a coordinate plane. Then determine whether the line segments named are congruent.
8. $\quad E(-3,2), F(1,2), G(2,3), H(2,-2) ; \overline{E F}$ and $\overline{G H}$

				y			
			1				
				1			x

Use the number line to find the indicated distance.

9. $J K$
11. $L M$
13. $J M$
14. $K M$

In the diagram, points P, Q, R, and S are collinear, $P S=46, P R=18$, and $P Q=Q R$. Find the indicated length.
15. $P Q$
16. $Q R$
17. $Q S$
18. $R S$

Find the indicated length.

19. Find $L M$.

20. Find $V W$.

21. Find $Y Z$.

Section:	$\mathbf{1 - 3}$ Use Midpoint and Distance Formulas
Essential Question	

Warm Up:
\square
Key Vocab:

Midpoint	The point that divides the segment into \qquad	
Segment Bisector	that intersects the segment at its \qquad _.	

Key Concepts:

| Midpoint Formula | | |
| :--- | :--- | :--- | :--- |
| If
 $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points on a
 coordinate plane, | then
 the midpoint M of $\overline{A B}$ has coordinates | |

Distance Formula	
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in coordinate plane,	then the distance between A and B is

Show:
Ex 1: The figure shows a gate with diagonal braces. $M O$ bisects $N P$ at Q. If $\mathrm{PQ}=22.6$ in., find $P N$.

Ex 2: Point S is the midpoint of $\overline{R T}$. Find $S T$.

Ex 3: Find $P Q$ given the coordinates for its endpoints are $P(2,5)$ and $Q(-4,8)$. Approximate answer to the nearest hundredth.

Ex 4: The endpoints of $G H$ are $G(7,-2)$ and $H(-5,-6)$. Find the coordinates of the midpoint P.

Lesson 1.3

Practice A

Line l bisects the segment. Find the indicated length.

1. Find $A C$ if $A B=6 \mathrm{~cm}$.

2. Find $D F$ if $D E=17 \mathrm{~cm}$.

3. Find $S T$ if $R T=109 \mathrm{in}$.

4. Line $C D$ bisects $\overline{A B}$ at point C. Find $A C$ if $A B=56$ feet.

In each diagrams, M is the midpoint of the segment. Find the indicated length.
5. Find $X M$.

6. Find $M F$.

In each diagrams, M is the midpoint of the segment. Find the indicated length.
7. Find $M H$.

8. Find $J K$.

9. Find $L N$.

10. Find $P Q$.

Find the coordinates of the midpoint of the segment with the given endpoints.
11. $R(3,1)$ and $S(3,7)$
12. $V(2,4)$ and $W(6,6)$

Find the length of the segment. Round to the nearest tenth of a unit.
13.

14.

15. Find the length of the segment. Then find the coordinate of the midpoint of the segment.

Section:	$\mathbf{1 - 4}$ Measure and Classify Angles
Essential Question	

Warm Up:
\square

Key Vocab:

Angle	Notation:	
Sides	Notation:	
Vertex		
Congruent Angles		

Angle Bisector

Classifying Angles							
Acute Angle							
Right Angle							
Obtuse Angle							

Postulate:

Angle Addition Postulate		
If	Then	
P is in the interior of $\angle R S T$,		

Show:
Ex 1: Name each angle that has N as a vertex.

Ex 2: Use the diagram to find the measure of each angle and classify the angle.

a. $\angle D E C$ \qquad
b. $\angle D E A$ \qquad
c. $\angle C E B$ \qquad
d. $\angle D E B$ \qquad

Ex 3: If $m \angle X Y Z=72^{\circ}$, find $m \angle X Y W$ and $m \angle Z Y W$.

Write three names for the angle shown. Then name the vertex and sides of the angle.
1.

2.

3.

Classify the angle with the given measure as acute, obtuse, right, or straight
4. $m \angle A=115^{\circ}$ \qquad
5. $m \angle A=85^{\circ}$ \qquad
6. $m \angle A=90^{\circ}$ \qquad
7. $m \angle A=170^{\circ}$ \qquad

Use a protractor to find the measure of the given angle. Then classify the angle as acute, obtuse, right, or straight
8. DFE
9. $\angle A F B$
10. $\angle C F E$
11. $\angle A F E$

Find the indicated angle measure.

12. $m \angle P R S=\ldots$?

13. $m \angle E F G=\ldots$?

14. $m \angle W X Z=\ldots$?

Use the given information to find the indicated angle measure.
15. Given $m \angle A D C=135^{\circ}$, find $m \angle B D C$.

16. Given $m \angle N R Q=78^{\circ}$, find $m \angle P R Q$.

Given that $\overrightarrow{X Z}$ bisects $\angle W X Y$, find the two angle measures not given in the diagram.
17.

18.

19.

Given that $\overrightarrow{B D}$ bisects $\angle A B C$, find the $m \angle A B D$ and $m \angle C B D$.
20.

Section:	$\mathbf{1 - 5}$ Describe Angle Pair Relationships
Essential Question	

Warm Up:
\square

Key Vocab:

Complementary Angles		
Supplementary Angles		Adjacent Non-adjacent
Adjacent Angles	Two angles that share a common \qquad , but have no common interior points	
Linear Pair		$\stackrel{1 / 2}{\longleftrightarrow}$
Vertical Angles	Two angles whose sides form two pairs of \qquad Examples:	

Show:
Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.

Supplementary Angles:	Complementary Angles:	Adjacent Angles:

Ex 2: a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1=17^{\circ}$, find $m \angle 2$.
b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3=119^{\circ}$, find $m \angle 4$.

Ex 3: Two roads intersect to form supplementary angles, $\angle X Y W$ and $\angle W Y Z$. Find $m \angle X Y W$ and $m \angle W Y Z$.

Ex 4: Identify all of the linear pairs and all of the vertical angles in the figure.

Linear Pairs:

Vertical Angles:

Ex 5: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

Ex 6: The measure of one angle is 7 times the measure of its complement. Find the measure of each angle.

LESSON 1.5

Practice A
Tell whether the indicated angles are adjacent.

1. $\angle B A C$ and $\angle C A D$

2. $\angle E F G$ and $\angle H G F$
3. $\angle J N M$ and $\angle L N K$

Name a pair of complementary angles and a pair of supplementary angles.
4.

5.

$\angle 1$ and $\angle 2$ are complementary angles. Given the $m \angle 1$, find $m \angle 2$.
6. $m \angle 1=52^{\circ}$
7. $m \angle 1=76^{\circ}$
8. $m \angle 1=19^{\circ}$
9. $m \angle 1=63^{\circ}$
$\angle 1$ and $\angle 2$ are supplementary angles. Given the $m \angle 1$, find $m \angle 2$.
10. $m \angle 1=147^{\circ}$
11. $m \angle 1=94^{\circ}$
12. $m \angle 1=38^{\circ}$
13. $m \angle 1=121^{\circ}$

Find the value of x.
14.

15.

16.

Tell whether the angles are vertical angles, a linear pair, or neither.
17. $\angle 1$ and $\angle 2$
18. $\angle 1$ and $\angle 3$
19. $\angle 2$ and $\angle 4$

20. $\angle 3$ and $\angle 4$
21. $\angle 5$ and $\angle 6$
22. $\angle 5$ and $\angle 7$
23. $\angle 6$ and $\angle 8$
24. $\angle 7$ and $\angle 8$

Find the values of x and y.
25.

26.

27.

$\angle A$ and $\angle B$ are complementary. Find $m \angle A$ and $m \angle B$
28. $\begin{aligned} m \angle A & =x^{\circ} \\ m \angle B & =(x-30)^{\circ}\end{aligned}$
30. $m \angle A=(4 x-2)^{\circ}$ $m \angle B=(11 x+17)^{\circ}$
$\angle A$ and $\angle B$ are supplementary. Find $m \angle A$ and $m \angle B$

$$
\text { 32. } \begin{aligned}
m \angle A & =x^{\circ} \\
m \angle B & =3 x^{\circ}
\end{aligned}
$$

29. $m \angle A=(5 x+4)^{\circ}$
$m \angle B=(7 x-10)^{\circ}$
30. $m \angle A=(6 x-9)^{\circ}$ $m \angle B=(8 x+1)^{\circ}$
31. $m \angle A=(7 x-3)^{\circ}$
$m \angle B=(x-1)^{\circ}$

| Section: | $\mathbf{1 - 6} \quad$ Classify Polygons |
| :--- | :--- | :--- |
| Essential
 Question | |

Warm Up:

\square
Key Vocab:

Concave	A polygon with one or more interior angles measuring \qquad \qquad \qquad	
n-gon		Example:
Equilateral	A polygon with all of its \qquad congruent	
Equiangular	A polygon with all of its \qquad \qquad congruent	
Regular	A \qquad polygon that has \qquad \qquad and \qquad congruent	

Show:

Ex 1: Tell whether each figure is a polygon. If it is, tell whether it is concave or convex.
a.

b.

Ex 2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.
a.

b.

c.

Ex 3: A rack for billiard balls is shaped like an equilateral triangle. Find the length of a side.

Tell whether the figure is a polygon. If it is not, explain why. If it is a polygon, tell whether it is convex or concave.
1.


```
                                    YES or NO
                                    EXPLANATION:
```

2.

3.

YES or NO EXPLANATION:

Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.
4.

CLASSIFICATION: \qquad
EQUILATERAL? Y or N
EQUIANGULAR? Y or N
REGULAR? Y or N
EXPLANATION:
5.

CLASSIFICATION: \qquad

EQUILATERAL? Y or N
EQUIANGULAR? Y or N
REGULAR? Y or N
EXPLANATION:
6.

CLASSIFICATION: \qquad
EQUILATERAL? Y or N
EQUIANGULAR? Y or N
REGULAR? Y or N
EXPLANATION:
7.

CLASSIFICATION: \qquad
EQUILATERAL? Y or N
EQUIANGULAR? Y or N
REGULAR? Y or N
EXPLANATION:

Each figure is a REGULAR polygon. Expressions are given for two side lengths. Find the value of x.
8.

9.

10.

11.

