CHAPTER 1 -Essentials of GEOMETRy

In this chapter we address three Big IDEAS:

1) Describing geometric figures
2) Measuring geometric figures
3) Understanding equality and congruence

Section:	1 - 1 Identify Points, Lines, and Planes
Essential Question	How do you name geometric figures?

Warm Up:
\square
Key Vocab:

Undefined Terms		
A basic figure that is not defined in terms of other figures.		
Point	An undefined term in geometry Has no dimension - no length, width, or height. Designates a location	A "Point A "
Line	An undefined term in geometry Has one dimension - length A straight path that has no thickness and extends forever	
Plane	An undefined term in geometry Has two dimensions - length and width A flat surface that has no thickness and extends forever in two dimensions	Plane $E F G$ or Plane R

Defined Terms

Terms that can be described using other figures such as point or line

Collinear Points	Points that lie on the same line.	
Coplanar Points	Points that lie in the same plane.	
Line Segment	Part of a line that consists of two points, called endpoints, and all points on the line that are between the endpoints.	$\mathrm{C}_{\overline{B C}}^{\mathrm{B}}$
Ray	Half of a line that consists of one point called an endpoint and all points on the line that extend in one direction.	
Opposite Rays	Collinear rays, with a common endpoint, extending in opposite directions.	$\overrightarrow{S R}$ and $\overrightarrow{S T}$ are opposite rays S is the common endpoint.
Intersection	The set of all points two or more figures have in common.	

Show:

Ex 1:
a. Give two other names for $\overleftrightarrow{B D}$.
$\overleftrightarrow{D B}$ and m
b. Give another name for plane T. plane $A B E$, plane $B E C$, plane $A E C$
c. Name three points that are collinear.
A, B, C
d. Name four points that are coplanar.

A, B, C, E

Ex 2:

a. Give another name for $\overline{P R}$.
$\overline{R P}$
b. Name all rays with endpoint Q. Which of these rays opposite rays?
$\overrightarrow{Q P}, \overrightarrow{Q R}, \overrightarrow{Q T}, \overrightarrow{Q S}$;

are
$\overrightarrow{Q T}$ and $\overrightarrow{Q S}, \overrightarrow{Q P}$ and $\overrightarrow{Q R}$ are opposite rays.

Section:	$\mathbf{1 - 2}$ Use Segments and Congruence
Essential Question	What is the difference between congruence and equality?

Warm Up:

\square

Key Vocab:

Postulate or Axiom	A rule that is accepted without proof
Theorem	A rule that can be proven
Between	When three points are collinear, you can say one point is between the other two.
Congruent Segments	Line segments that have the same length.
	Lengths are equal Segments are congruent $A B=C D$ (is equal to) $\overline{A B} \cong \overline{C D}$ (is congruent to) a number $=$ a number A segment \cong a segment

Postulates:

Ruler Postulate	
Allows for the creation of a measuring system.	
The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of the point.	
The distance between points A and B, written $A B$, is the absolute value of the difference of the coordinates of A and B.	

Segment Addition Postulate		
The sum of the parts equals the whole		
If B is between A and C,	then $A B+B C=A C .$	
If $A B+B C=A C$	then B is between A and C.	

Show:

Ex 1: The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Bismarck to Fargo. 190 mi

Ex 2: Find CD. 42-17=25

Ex 3: Graph the points $X(-2,-5), Y(-2,3), W(-4,3)$, and $Z(4,3)$ in a coordinate plane. Are $\overline{X Y}$ and $\overline{W Z}$ congruent?

$$
\overline{X Y} \cong \overline{W Z}
$$

Ex 4: Find the value of x. Then find $M N$.

Section:	$\mathbf{1 - 3}$ Use Midpoint and Distance Formulas
Essential Question	How do you find the distance and the midpoint between two points in the coordinate plane?

Warm Up:
\square

Key Vocab:

Midpoint	The point that divides the segment into two congruent segments.	Mis the midpoint of $\overline{A B}$
Segment Bisector	A point, ray, line, line segment, or plane that intersects the segment at its midpoint.	

Key Concepts:

Midpoint Formula	
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points on coordinate plane,	then the midpoint M of $\overline{A B}$ has coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Distance Formula	
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in coordinate plane,	then the distance between A and B is $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Show:

Ex 1: The figure shows a gate with diagonal braces. $\overline{M O}$ bisects $\overline{N P}$ at Q. If $\mathrm{PQ}=22.6$ in., find $P N$. By the definition of a segment bisector $P N=45.2$ in

Ex 2: Point S is the midpoint of $\overline{R T}$. Find $S T$.

$$
\begin{aligned}
5 x-2 & =3 x+8 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

$$
S T=3(5)+8=23
$$

Ex 3: Find $P Q$ given the coordinates for its endpoints are $P(2,5)$ and $Q(-4,8)$. Approximate answer rounded to the nearest hundredth.

$$
\begin{aligned}
P Q & =\sqrt{(-4-2)^{2}+(8-5)^{2}} \\
& =\sqrt{36+9} \\
& =\sqrt{45} \approx 6.71
\end{aligned}
$$

Ex 4: The endpoints of $\overline{G H}$ are $G(7,-2)$ and $H(-5,-6)$. Find the coordinates of the midpoint P.

$$
\left(\frac{7-5}{2}, \frac{-2--6}{2}\right)=(1,-4)
$$

Section:	$\mathbf{1 - 4}$ Measure and Classify Angles
Essential Question	How do you identify whether an angle is acute, right, obtuse, or straight?

Warm Up:
\square

Key Vocab:

| Angle | Two different rays with the same
 endpoint
 Notation: $\square B A C, \square C A B, \square A, \square 1$
 $\angle B A C, \angle C A B, \angle A, \angle 1$ |
| :--- | :--- | :--- |
| Sides | The rays are the sides of the angle
 Notation: $\overrightarrow{A B}, \overrightarrow{A C}$ |
| Vertex | The common endpoint of the rays |

| Angle Bisector | A ray that divides an angle into two
 congruent angles. |
| :--- | :--- | :--- | :--- |
| | *segment bisector \neq angle bisector* |$\underset{Y W}{ }$

Postulate:

Show:

Ex 1: Name each angle that has N as a vertex. $\angle M N O, \angle O N P, \angle M N P$

Ex 2: Use the diagram to find the measure of each angle and classify the angle.

a. $\angle D E C _90^{\circ}$ Right
b. $\angle D E A _180^{\circ}$ Straight_
c. $\angle C E B \quad 20^{\circ}$ Acute \qquad
d. $\angle D E B$ \qquad 110° Obtuse

Ex 3: If $m \angle X Y Z=72^{\circ}$, find $m \angle X Y W$ and $m \angle Z Y W$.
By the Angle Addition Postulate:

$$
\begin{array}{r}
2 x-9+3 x+6=72 \\
5 x-3=72 \\
5 x=75 \\
x=15
\end{array}
$$

$$
\begin{aligned}
& m \angle X Y W=2(15)-9=21^{\circ} \\
& m \angle Z Y W=3(15)+6=51^{\circ}
\end{aligned}
$$

Section:	$\mathbf{1 - 5}$ Describe Angle Pair Relationships
Essential Question	How do you identify complementary and supplementary angles?

Warm Up:
\square

Key Vocab:

Complementary Angles	Two angles whose sum is 90°	
Supplementary Angles	Two angles whose sum is 180°	Adjacent Non-adjacent
Adjacent Angles	Two angles that share a common vertex and side, but have no common interior points	
Linear Pair	Two adjacent angles whose noncommon sides are opposite rays	$\stackrel{1}{\longleftrightarrow}$
Vertical Angles	Two angles whose sides form two pairs of opposite rays Examples: $\angle 1$ and $\angle 3$ $\angle 2$ and $\angle 4$	

Show:

Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles. $\angle G H I, \angle J L K ; \angle G H I, \angle K L M ; \angle J L K, \angle K L M$

Ex 2: a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1=17^{\circ}$, find $m \angle 2.73^{\circ}$
b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3=119^{\circ}$, find $m \angle 4.61^{\circ}$

Ex 3: Two roads intersect to form supplementary angles, $\angle X Y W$ and $\angle W Y Z$. Find $m \angle X Y W$ and $m \angle W Y Z .76^{\circ}, 104^{\circ}$

Ex 4: Identify all of the linear pairs and all of the vertical angles in the figure.

Linear pairs: $\angle 2$ and $\angle 3 ; \angle 1$ and $\angle 3$
Vertical angles: $\angle 1$ and $\angle 3$

Ex 5: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

$3 x+x$	$=180$
$4 x$	$=180$
x	$=45^{\circ}$
$3 x$	$=135^{\circ}$

Ex 6: The measure of one angle is 7 times the measure of its complement. Find the measure of each angle.

$$
\begin{aligned}
7 x+x & =90 \\
8 x & =90 \\
x & =11.25^{\circ} \\
7 x & =78.75^{\circ}
\end{aligned}
$$

Section:	$\mathbf{1 - 6} \quad$ Classify Polygons
Essential Question	How do you classify polygons?

Warm Up:

\square

Key Vocab:

Polygon	A closed plane figure with three or more sides each side intersects exactly two sides, one at each endpoint, so that no two sides with a common endpoint are collinear	
Sides	Each line segment that forms a polygon	Sides: $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D E}$, and $\overline{A E}$
Vertex	Each endpoint of a side of a polygon	
Convex		

Concave	A polygon with one or more interior angles measuring greater than 180° Opposite of convex	
n-gon	A polygon with n sides	Example: A polygon with 14 sides is a 14-gon
Equilateral	A polygon with all of its sides congruent	A polygon with all of its interior angles congruent
Equiangular		
Regular	A convex polygon that has all sides and all angles congruent	

Show:

Ex 1: Tell whether each figure is a polygon. If it is, tell whether it is concave or convex.

Yes; Convex
b.

Yes; Concave

Ex 2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.
a.

Triangle; only 2 sides congruent, only 2 angles congruent, so not equilateral, not equiangular, not regular.

Hexagon; equilateral, equiangular, regular

Quadrilateral; equilateral, not equiangular, so not regular

Ex 3: A rack for billiard balls is shaped like an equilateral triangle. Find the length of a side.

$$
\begin{aligned}
6 x-4 & =4 x+2 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

