Chapter 1 – Essentials of Geometry

In this chapter we address three **Big IDEAS**:

- 1) Describing geometric figures
- 2) Measuring geometric figures
- 3) Understanding equality and congruence

Section: 1 – 1 Identify Points, Lines, and Planes

Essential Question How do you name geometric figures?

Warm Up:

Undefined Terms			
	A basic figure that is not defined in terms of o	ther figures.	
Point	An undefined term in geometry Has no dimension – no length, width, or height. Designates a location	A "Point <i>A</i> "	
Line	An undefined term in geometry Has one dimension – length A straight path that has no thickness and extends forever	$\checkmark \qquad \qquad$	
Plane	An undefined term in geometry Has two dimensions – length and width A flat surface that has no thickness and extends forever in two dimensions	$E \qquad F \bullet G \qquad R$ $Plane EFG \text{ or } Plane R$	

Defined Terms			
Term	s that can be described using other figures su	uch as point or line	
Collinear Points	Points that lie on the same line.		
Coplanar Points	Points that lie in the same plane.		
Line Segment	Part of a line that consists of two points, called endpoints, and all points on the line that are between the endpoints.	с в BC	
Ray	Half of a line that consists of one point called an endpoint and all points on the line that extend in one direction.	$A \qquad B \\ \bullet \qquad \bullet \qquad \bullet \qquad \bullet \\ \overline{AB}$	
Opposite Rays	Collinear rays, with a common endpoint, extending in opposite directions.	$\overrightarrow{SR} \text{ and } \overrightarrow{ST} \text{ are opposite rays}$ $S \text{ is the common endpoint.}$	
Intersection	The set of all points two or more figures have in common.		

- Ex 1:
- a. Give two other names for \overrightarrow{BD} . \overrightarrow{DB} and \overrightarrow{m}
- b. Give another name for plane *T*. plane *ABE*, plane *BEC*, plane *AEC*
- c. Name three points that are collinear. A, B, C
- d. Name four points that are coplanar. A, B, C, E

Ex 2:

- a. Give another name for \overline{PR} .
- b. Name all rays with endpoint *Q*. Which of these rays opposite rays?

 \overrightarrow{QP} , \overrightarrow{QR} , \overrightarrow{QT} , \overrightarrow{QS} ; \overrightarrow{QT} and \overrightarrow{QS} , \overrightarrow{QP} and \overrightarrow{QR} are opposite rays.

Section:	1 – 2 Use Segments and Congruence
Essential Question	What is the difference between congruence and equality?

Postulate or Axiom	A rule that is accepted without proof		
Theorem	A rule that can be proven		
Between	When three points are collinear, you can say one point is between the other two.	$\begin{array}{c} A & B & C \\ \bullet & \bullet & \bullet \\ \hline Point B \text{ is between points } A \& C \end{array}$	
	Line segments that have the same length.		
Congruent Segments	A E ●──┼─● Lengths are equal	³ C D ● → → ● Segments are congruent	
	AB = CD (is equal to) a number = a number	$\overline{AB} \cong \overline{CD}$ (is congruent to) A segment \cong a segment	

Postulates:

Segment Addition Postulate				
	The sum of the parts equals the whole			
If B is between A and C,	then $AB + BC = AC$.	AC A B C		
If $AB + BC = AC$,	then <i>B</i> is between <i>A</i> and <i>C</i> .	AB BC		

Show:

Ex 1: The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Bismarck to Fargo. 190 mi

Ex 3: Graph the points X(-2, -5), Y(-2, 3), W(-4, 3), and Z(4, 3) in a coordinate plane. Are \overline{XY} and \overline{WZ} congruent?

Ex 4: Find the value of *x*. Then find *MN*.

\vdash		6	0	
L	Х	М	2 <i>x</i>	Ň
<u>x</u> -	+ 2x =	<mark>= 60</mark>		
	3 <i>x</i> :	<mark>= 60</mark>	$\frac{2x}{2}$	=MN=40
	<i>x</i> :	<mark>= 20</mark>		

Section:	1 – 3 Use Midpoint and Distance Formulas	
Essential Question	How do you find the distance and the midpoint between two points in the coordinate plane?	

ſ	

Midpoint	The point that divides the segment into two congruent segments.	$\begin{array}{c c} A & M & B \\ \hline \sigma & + & \bullet & + & \bullet \\ \hline M \text{ is the midpoint of } \overline{AB} \end{array}$
Segment Bisector	A point, ray, line, line segment, or plane that intersects the segment at its midpoint.	$\overline{CD} \text{ is a segment bisector of } \overline{AB}$

Key Concepts:

Show:

Ex 1: The figure shows a gate with diagonal braces. \overline{MO} bisects \overline{NP} at Q. If PQ=22.6 in., find PN. By the definition of a segment bisector PN = 45.2 in

Ex 2: Point *S* is the midpoint of \overline{RT} . Find *ST*.

Ex 3: Find PQ given the coordinates for its endpoints are P(2,5) and Q(-4,8). Approximate answer rounded to the nearest hundredth.

$$PQ = \sqrt{(-4-2)^2 + (8-5)^2}$$

= $\sqrt{36+9}$
= $\sqrt{45} \approx 6.71$

Ex 4: The endpoints of \overline{GH} are G(7, -2) and H(-5, -6). Find the coordinates of the midpoint *P*.

$$\left(\frac{7-5}{2}, \frac{-2--6}{2}\right) = (1, -4)$$

Section:	1 – 4 Measure and Classify Angles
Essential Question	How do you identify whether an angle is acute, right, obtuse, or straight?

		1
		1

Angle	Two different rays with the same endpointNotation: BAC , $\Box CAB$, $\Box A$, $\Box 1$ $\angle BAC$, $\angle CAB$, $\angle A$, $\angle 1$	B
Sides	The rays are the sides of the angle Notation: \overrightarrow{AB} , \overrightarrow{AC}	A C
Vertex Congruent Angles	The common endpoint of the rays Angles that have the same measure	A \square

Angle Bisector	A ray that divides an angle into <mark>two</mark> congruent angles.	Y W
	segment bisector ≠angle bisector	\overline{YW} bisects $\angle XYZ$ Z^{\rightarrow}
		$\therefore \angle XYW \cong \angle WYZ$

Classifying Angles		
Acute Angle	A	$0^{\circ} < m\Box A < 90^{\circ}$
Right Angle		$m\Box A = 90^{\circ}$
Obtuse Angle	A	<mark>90° < <i>m</i>∃ A <180°</mark>
Straight Angle	Å Å	$m \square A = 180^{\circ}$

Postulate:

Angle Addition Postulate			
	The sum of the parts equals	the whole	
If <i>P</i> is in the interior of $\angle RST$,	Then $m\angle RST = m\angle RSP + m\angle PST$	$m \ll RST \ S \xrightarrow{m \ll RSP} m \ll RST \ P \xrightarrow{T} T$	

Ex 1: Name each angle that has N as a vertex. $\angle MNO$, $\angle ONP$, $\angle MNP$

Ex 2: Use the diagram to find the measure of each angle and classify the angle.

d. $\angle DEB$ ____110° Obtuse___

Ex 3: If $m \angle XYZ = 72^\circ$, find $m \angle XYW$ and $m \angle ZYW$.

By the Angle Addition Postulate:

 $m\angle ZYW = 3(15) + 6 = 51^{\circ}$

Section:	1 – 5 Describe Angle Pair Relationships	
Essential Question	How do you identify complementary and supplementary angles?	

Complementary Angles	Two angles whose sum is 90°	Adjacent Non-adjacent
Supplementary Angles	Two angles whose sum is 180°	Adjacent Non-adjacent
Adjacent Angles	Two angles that share a common vertex and side, but have no common interior points	
Linear Pair	Two adjacent angles whose noncommon sides are opposite rays	
Vertical Angles	Two angles whose sides form two pairs of opposite rays Examples: $\angle 1$ and $\angle 3$ $\angle 2$ and $\angle 4$	

Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles. $\angle GHI$, $\angle JLK$; $\angle GHI$, $\angle KLM$; $\angle JLK$, $\angle KLM$

Ex 2: a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1 = 17^\circ$, find $m \angle 2$. 73°

b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3 = 119^\circ$, find $m \angle 4$. 61°

Ex 3: Two roads intersect to form supplementary angles, $\angle XYW$ and $\angle WYZ$. Find $m \angle XYW$ and $m \angle WYZ$. 76°, 104°

Ex 4: Identify all of the linear pairs and all of the vertical angles in the figure.

Ex 5: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

3x + x = 180
4x = 180
$x = 45^{\circ}$
$3x = 135^{\circ}$

Ex 6: The measure of one angle is 7 times the measure of its complement. Find the measure of each angle.

7x + x = 90
8x = 90
$x = 11.25^{\circ}$
$7x = 78.75^{\circ}$

Section:	1 – 6 Classify Polygons
Essential Question	How do you classify polygons?

Polygon	A closed plane figure with three or more sides each side intersects exactly two sides, one at each endpoint, so that no two sides with a common endpoint are collinear	B D
Sides	Each line segment that forms a polygon	$A \qquad E$ Sides: \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , and \overline{AE}
Vertex	Each endpoint of a side of a polygon	Vertices: A, B, C, D and E
Convex	A polygon where no line containing a side of the polygon contains a point in the interior of the polygon All interior angles measures are less than 180°	interior

Concave	A polygon with one or more interior angles measuring greater than 180° Opposite of convex	
n-gon	A polygon with <i>n</i> sides	Example: A polygon with 14 sides is a 14-gon
Equilateral	A polygon with all of its sides congruent	×~×
Equiangular	A polygon with all of its <mark>interior</mark> angles congruent	E.J
Regular	A <mark>convex</mark> polygon that has <mark>all sides</mark> and <mark>all angles</mark> congruent	Regular Pentagon

a.

Ex 1: Tell whether each figure is a polygon. If it is, tell whether it is concave or convex.

Ex 2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.

Ex 3: A rack for billiard balls is shaped like an equilateral triangle. Find the length of a side.

$$6x-4 = 4x+2$$

$$2x = 6$$

$$x = 3$$

$$6(3)-4 = 4(3)+2 = 14 \text{ in}$$