CHAPTER 1 - EsSEntials of GEOMETRY

In this chapter we address three Big IDEAS:

1) Describing geometric figures
2) Measuring geometric figures
3) Understanding equality and congruence

Section:	$\mathbf{1} \mathbf{- 1}$ Identify Points, Lines, and Planes
Essential Question	How do you name geometric figures?

Warm Up:
\square

Key Vocab:

Undefined Terms		
A basic figure that is not defined in terms of other figures.		
Point	An undefined term in geometry Has no dimension - no length, width, or height. Designates a location	A "Point A "
Line	An undefined term in geometry Has one dimension - length A straight path that has no thickness and extends forever	
Plane	An undefined term in geometry Has two dimensions - length and width A flat surface that has no thickness and extends forever in two dimensions	Plane $E F G$ or Plane R

Defined Terms		
Terms that can be described using other figures such as point or line		
Collinear Points	Points that lie on the same line.	
Coplanar Points	Points that lie in the same plane.	
Line Segment	Part of a line that consists of two points, called endpoints, and all points on the line that are between the endpoints.	
Ray	Half of a line that consists of one point called an endpoint and all points on the line that extend in one direction.	
Opposite Rays	Collinear rays, with a common endpoint, extending in opposite directions.	$\overrightarrow{S R}$ and $\overrightarrow{S T}$ are opposite rays S is the common endpoint.
Intersection	The set of all points two or more figures have in common.	

Show:

Ex 1:

a. Give two other names for $\overleftrightarrow{B D}$.
$\overleftrightarrow{D B}$ and m
b. Give another name for plane T.
plane $A B E$, plane $B E C$, plane $A E C$
c. Name three points that are collinear.
A, B, C
d. Name four points that are coplanar.

A, B, C, E
Ex 2:
a. Give another name for $\overline{P R}$.
$\overline{R P}$
b. Name all rays with endpoint Q. Which of these rays are opposite rays?
$\overrightarrow{Q P}, \overrightarrow{Q R}, \overrightarrow{Q T}, \overrightarrow{Q S}$;

$\overrightarrow{Q T}$ and $\overrightarrow{Q S}, \overrightarrow{Q P}$ and $\overrightarrow{Q R}$ are opposite rays.

Section:	$\mathbf{1 - 2}$ Use Segments and Congruence
Essential Question	What is the difference between congruence and equality?

Warm Up:
\square

Key Vocab:

Postulate or Axiom	A rule that is accepted without proof
Theorem	A rule that can be proven
Between	When three points are collinear, you can say one point is between the other two. Point B is between points $A \& C$
Congruent Segments	Line segments that have the same length.
	Lengths are equal Segments are congruent a number = a number (is equal to) $A B \cong \overline{C D}$ (is congruent to) A segment \cong a segment

*It would be incorrect to say that two desks are equal. Do they have equal heights? Equal weights? Equal volumes? Height, weight, and volume all refer to numeric values that describe the desk. "Numbers are equal."
*It would be correct to say that two desks are congruent. They have the same size and shape. "Objects are congruent."
*Could two objects have the same height, but be differently shaped? Yes! Equality is not always a specific enough descriptor. This is the reason we use congruence.

Postulates:

Ruler Postulate	
Allows for the creation of a measuring system.	
The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of the point.	
The distance between points A and B, written $A B$, is the absolute value of the difference of the coordinates of A and B.	

Segment Addition Postulate		
The sum of the parts equals the whole		
If B is between A and C,	then $A B+B C=A C .$	
If $A B+B C=A C$	then B is between A and C.	

Show:

Ex 1: The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Bismarck to Fargo. 190 mi

Ex 2: Find $C D .42-17=25$

Ex 3: Point S is between R and T on $\overline{R T}$. Use the given information to write an equation in terms of x. Solve the equation. Then find $R S$ and $S T$.

$$
R S=3 x-16 \quad S T=4 x-8 \quad R T=60
$$

By the Segment Addition Postulate:

$$
\begin{array}{rlr}
3 x-16+4 x-8 & =60 \\
7 x-24 & =60 \\
7 x & =84 \\
x & =12 & \\
\end{array}
$$

Closure:

- Explain the difference between congruence and equality.

Congruence is used to describe figures that have the same size and shape.
Equality is used to describe the size of figures and refers to a number associated with that measurement.

Section:	$\mathbf{1 - 2} 1 / 2$ Simplifying Radicals
Essential Question	How do you simplify radicals?

Warm Up:
\square

Key Vocab:

Square Root	If $r^{2}=s$, then $r=\sqrt{s}$ If the square of a number r is a number s, then a number \mathbf{r} is a square root of a number s Examples: $2=\sqrt{4} \quad$ two is the square root of four $4=\sqrt{16}$ four is the square root of sixteen
Radical	An expression of the form \sqrt{s} or $\sqrt[n]{s}$
Radicand	Number inside the radical sign \quad Radicand
Simplest Radical Form	A radical expression is in simplest radical form if no radicand contains a factor (other than one) that is a perfect square AND every denominator has been rationalized Non-Example: $\sqrt{18} 9$ is perfect square factor of 18 . Its simplest radical form is $3 \sqrt{2}$.
Rationalizing the Denominator	Rationalizing the denominator is a process of removing a radical from the denominator of a fraction. Example: $\frac{4}{\sqrt{3}}$ Step 1: $\frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$ Step 2: $\frac{4 \sqrt{3}}{\sqrt{9}}$ Step 3: $\frac{4 \sqrt{3}}{3}$

Key Concepts

Simplifying Radicals:	
$(\sqrt[n]{b})^{n}=\sqrt[n]{b^{n}}=b$	A square root and a squared quantity cancel out
$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$	The square root of a product is the product of the square roots \rightarrow You can break apart multiplication
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$	The square root of a quotient is the quotient of the square roots \rightarrow You can break apart division
$>\sqrt{a^{2}+b^{2}} \neq \sqrt{a^{2}}+\sqrt{b^{2}}$	Caution! The square root of a sum is NOT the sum of the square roots \rightarrow You CANNOT break apart addition!

Show:
Simplify.

1. $\sqrt{50}=5 \sqrt{2}$
2. $\sqrt{56}=2 \sqrt{14}$
3. $\sqrt{12}=2 \sqrt{3}$
4. $\sqrt{10}$ Simplified
5. $\sqrt{5^{2}}=5$
6. $\sqrt{x^{2}}=x$
7. $\sqrt{(-3)^{2}}=3$
8. $\sqrt{(-t)^{2}}=t$
9. $\sqrt{25 \cdot 9}=\sqrt{25} \cdot \sqrt{9}=5 \cdot 3=15$
10. $\sqrt{x^{2} y^{2}}=x y$
11. $\sqrt{\frac{16}{25}}=\frac{4}{5}$
12. $\sqrt{\frac{r^{2}}{w^{2}}}=\frac{r}{w}$
13. $\sqrt{\frac{1}{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
14. $\sqrt{\frac{2}{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{10}}{5}$
15. $\sqrt{\left(\frac{a}{2}\right)^{2}}=\frac{a}{2}$
16. $\sqrt{\left(\frac{-a}{2}\right)^{2}}=\frac{a}{2}$
17. $\sqrt{9+25}=\sqrt{34}$
18. $\sqrt{g^{2}+h^{2}}$ Simplified
19. $\sqrt{16(s+t)}=4 \sqrt{s+t}$
20. $\sqrt{4 n^{2}+4 m^{2}}=\sqrt{4\left(n^{2}+m^{2}\right)}$

$$
=2 \sqrt{n^{2}+m^{2}}
$$

Closure:

- How can you use decimals to check your answers?

Compare the decimal approximation of the original problem to the decimal approximation of your answer. If they match, you have simplified correctly. You simply need to make sure that you simplified COMPLETELY.

- How do you know when a square root is fully simplified?

A square root is simplified when there are no perfect square factors inside the radical AND there are no radicals in the denominator.

Section:	$\mathbf{1 - 3}$ Use Midpoint and Distance Formulas
Essential Question	How do you find the distance and the midpoint between two points in the coordinate plane?

Warm Up:
\square
Key Vocab:

Midpoint	The point that divides the segment into two congruent segments.	A
	A point, ray, line, line segment, or plane that intersects the segment at its midpoint.	
Segment Bisector		

Key Concepts:

Midpoint Formula	
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points on coordinate plane,	then the midpoint M of $\overline{A B}$ has coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Distance Formula	
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane,	then the distance between A and B is $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Show:

Ex 1: The figure shows a gate with diagonal braces. $\overline{M O}$ bisects $\overline{N P}$ at Q. If $\mathrm{PQ}=22.6$ in., find $P N$. By the definition of a segment bisector $P N=45.2$ in

Ex 2: Point S is the midpoint of $\overline{R T}$. Find $S T$.

$$
\begin{aligned}
5 x-2 & =3 x+8 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

$$
S T=3(5)+8=23
$$

Ex 3: Find $P Q$ given the coordinates for its endpoints are $P(2,5)$ and $Q(-4,8)$. Give an exact answer AND approximate answer rounded to the nearest hundredth.

$$
\begin{aligned}
P Q & =\sqrt{(-4-2)^{2}+(8-5)^{2}} \\
& =\sqrt{36+9} \\
& =\sqrt{45} \\
& =3 \sqrt{5} \approx 6.71
\end{aligned}
$$

Exact Answer Approximate Answer
Ex 4:
a. The endpoints of $\overline{G H}$ are $G(7,-2)$ and $H(-5,-6)$. Find the coordinates of the midpoint P.

$$
\left(\frac{7-5}{2}, \frac{-2--6}{2}\right)=(1,-4)
$$

b. The midpoint of $\overline{A B}$ is $M(5,8)$. One endpoint is $A(2,-3)$. Find the coordinates of the other endpoint B.

$$
\begin{aligned}
& x: \\
& 5=\frac{2+x}{2} \\
& 10=2+x \\
& 8=x
\end{aligned}
$$

$$
\begin{aligned}
& y \text { : } \\
& 8=\frac{-3+y}{2} \\
& 16=-3+y \\
& 19=y
\end{aligned}
$$

$$
B(8,19)
$$

c. The midpoint of $\overline{G H}$ is $M(4,-1)$. One endpoint is $G(5,3)$. Find the coordinates of the other endpoint H.
x :

$$
\begin{aligned}
& 4=\frac{5+x}{2} \\
& 8=5+x \\
& 3=x
\end{aligned}
$$

y :

$$
\begin{aligned}
-1 & =\frac{3+y}{2} \\
-2 & =3+y \\
-5 & =y
\end{aligned}
$$

Closure:

- Write the midpoint and distance formulas.

> Distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
> Midpoint formula: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Section:	$\mathbf{1 - 4}$ Measure and Classify Angles
Essential Question	How do you identify whether an angle is acute, right, obtuse, or straight?

Warm Up:
\square
Key Vocab:

| Angle | Two different rays with the same
 endpoint
 Notation: $\square B A C, \square C A B, \square A, \square 1$
 $\angle B A C, \angle C A B, \angle A, \angle 1$ |
| :--- | :--- | :--- | :--- |
| Sides | The rays are the sides of the angle
 Notation: $\overrightarrow{A B}, \overrightarrow{A C}$ |
| Vertex | The common endpoint of the rays |

| Angle Bisector |
| :--- | :--- | :--- | :--- |
| A ray that divides an angle into two
 congruent angles. |
| segment bisector \neq angle bisector* |

Postulate:

Show:

Ex 1: Name each angle that has N as a vertex. $\angle M N O, \angle O N P, \angle M N P$

\qquad
\qquad
\qquad

Ex 2: Use the diagram to find the measure of each angle and classify the angle.

a. $\angle D E C _90^{\circ}$ Right \qquad
b. $\angle D E A _180^{\circ}$ Straight_
c. $\angle C E B$
20° Acute \qquad
d. $\angle D E B$ \qquad 110° Obtuse

Ex 3: If $m \angle X Y Z=72^{\circ}$, find $m \angle X Y W$ and $m \angle Z Y W$.
By the Angle Addition Postulate:

$$
\begin{aligned}
2 x-9+3 x+6 & =72 \\
5 x-3 & =72 \\
5 x & =75 \\
x & =15
\end{aligned}
$$

$$
\begin{aligned}
& m \angle X Y W=2(15)-9=21^{\circ} \\
& m \angle Z Y W=3(15)+6=51^{\circ}
\end{aligned}
$$

Ex 4: The figure shows angles formed by the legs of an ironing board. Identify the congruent angles. If $m \angle H G I=40^{\circ}$, what is $m \angle G J K$?

$$
\begin{aligned}
& \angle H G I \cong \angle G J K, \angle G H K \cong \angle H K J \\
& \mathrm{~m} \angle G J K=40^{\circ}
\end{aligned}
$$

Closure:

- Explain the difference between congruence and equality in terms of angles.

Angles are said to be congruent while their measurements are said to be equal, for example $40^{\circ}=40^{\circ}$.

- What are the ways to classify angles?

Acute angles have measure between 0 degrees and 90 degrees.
Right angles have measure of exactly 90 degrees.
Obtuse angles have measures between 90 degrees and 180 degrees.
Straight angles have measure of exactly 180 degrees.

- Sketch a diagram: $\overrightarrow{L M}$ bisects $\angle A L B$
- Sketch a diagram: $\overrightarrow{L M}$ bisects $\overrightarrow{A B}$

Section:	$\mathbf{1 - 5}$ Describe Angle Pair Relationships
Essential Question	How do you identify complementary and supplementary angles?

Warm Up:
\square
Key Vocab:

| Complementary
 Angles | Two angles whose sum is 90° |
| :--- | :--- | :--- |
| Supplementary | |
| Angles | | Two angles whose sum is 180°,

Show:

Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles. $\angle G H I, \angle J L K ; \angle G H I, \angle K L M ; \angle J L K, \angle K L M$

Ex 2: a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1=17^{\circ}$, find $m \angle 2.73^{\circ}$
b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3=119^{\circ}$, find $m \angle 4.61^{\circ}$

Ex 3: Two roads intersect to form supplementary angles, $\angle X Y W$ and $\angle W Y Z$. Find $m \angle X Y W$ and $m \angle W Y Z .76^{\circ}, 104^{\circ}$

Ex 4: Identify all of the linear pairs and all of the vertical angles in the figure.

Ex 5: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

$$
\left.\begin{array}{rl}
x+y & =180 \\
3 y+y & =180 \\
4 y & =180 \\
y & =45^{\circ}
\end{array}, ~ \begin{array}{r}
x \\
x
\end{array} \quad \begin{array}{l}
x(45) \\
x
\end{array}\right)=135^{\circ}
$$

Ex 6: The measure of one angle is 7 times the measure of its complement. Find the measure of each angle.

$$
\begin{aligned}
x & =7(90-x) \\
8 x & =630 \\
x & =78.75^{\circ}
\end{aligned} \quad 90-78.75=11.75^{\circ}
$$

Closure:

- Compare and contrast complementary and supplementary angles.

Section:	$\mathbf{1 - 6} \quad$ Classify Polygons
Essential Question	How do you classify polygons?

Warm Up:
\square

Key Vocab:

Polygon	A closed plane figure with three or more sides each side intersects exactly two sides, one at each endpoint, so that no two sides with a common endpoint are collinear	
Sides	Each line segment that forms a polygon	\square Sides: $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D E}$, and $\overline{A E}$
Vertex	Each endpoint of a side of a polygon	Vertices: A, B, C, D and E
Convex	A polygon where no line containing a side of the polygon contains a point in the interior of the polygon All interior angles measures are less than 180°	

Concave	A polygon with one or more interior angles measuring greater than 180° Opposite of convex	A polygon with n sides is a 14-gon
n-gon	A polygon with all of its sides congruent	A polygon with all of its interior angles congruent
Equilateral with 14 sides		
Regular	A convex polygon that has all sides and all angles congruent	

Show:

Ex 1: Tell whether each figure is a polygon. If it is, tell whether it is concave or convex.
a.

Yes; Convex
b.

Yes; Concave

Ex 2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.
a.

Triangle; only 2 sides congruent, only 2 angles congruent, so not equilateral, not equiangular, not regular.
b.

Hexagon; equilateral, equiangular, regular
c.

Quadrilateral; equilateral, not equiangular, so not regular

Ex 3: A rack for billiard balls is shaped like an equilateral triangle. Find the length of a side.

$$
\begin{aligned}
6 x-4 & =4 x+2 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

