Chapter 8 – Quadrilaterals

In this chapter we address three **Big IDEAS**:

1) Using angle relationships in polygons.

2) Using properties of parallelograms.

3) Classifying quadrilaterals by the properties.

Section:	8 – 1 Find Angle Measures in Polygons
Essential Question	How do you find a missing angle measure in a convex polygon?

Warm Up:

1	
1	
1	
1	
1	
1	

Key Vocab:

Diagonal	A segment that joins two nonconsecutive vertices of a polygon.	diagonals
----------	---	-----------

Theorems:

Polynomial Interior Angles Theorem: The sum of the measures of a convex *n*-gon is $(n-2)\cdot 180^{\circ}$

Corollary - Interior Angles of a Quadrilateral: The sum of the measures of the interior angles of a quadrilateral is 360⁰.

Polynomial Exterior Angles Theorem: The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360° .

Area of a Regular Polygon: $A = \frac{1}{2}ap$ where *a* is the *apothem* and *p* is the perimeter.

Ex 1: Find the sum of the measures of the interior angles of a convex decagon.

 $(10-2)180 = 1440^{\circ}$

Ex 2: The sum of the measures of the interior angles of a convex polygon is 2340° . Classify the polygon by the number of sides.

2340 = (n-2)180		
13 = n - 2	r	The polygon is an 15-gon
15 = n		

Ex 3: Find the value of *x* in each of the diagrams shown below.

Section:	8 – 2 Use Properties of Parallelograms	
Essential Question	How do you find angle and side measures in a parallelogram?	

Key Vocab:

Parallelogram	A quadrilateral with <mark>BOTH</mark> pairs of opposite sides parallel.	P S R
		$\square PQRS$

If	Then
a quadrilateral is a parallelogram,	its opposite sides are congruent.
□ PQRS	$\overline{PQ} \cong \overline{RS}$ and $\overline{QR} \cong \overline{PS}$
P S R	P S R

If	Then
a quadrilateral is a parallelogram,	its diagonals bisect each other.
$\Box PQRS$	$\overline{QM} \cong \overline{MS}$ and $\overline{PM} \cong \overline{RM}$.
P S R	P R R

Ex1: Find the values of x and y.

Ex2: Find the indicated measure.

a)
$$NM = 2$$

b) $KM = 4$
c) $m \angle JML = 70^{\circ}$
d) $m \angle KML = 40^{\circ}$
k $\sqrt{2}$
k $\sqrt{2}$

Ex3: The diagonals of parallelogram PQRS intersect at point T. What are the coordinates of point T?

The diagonals of a parallelogram bisect each other, so T is the midpoint of \overline{PR}

T	2+9	1+4	_(11	5)
1.	2,	2	$= (-2)^{-1}$	$\overline{2}$

Closure:

• What are the properties of a parallelogram?

A parallelogram's opposite sides are parallel and congruent. Its opposite pairs of angles are congruent. Its consecutive pairs of angles are supplementary. Its diagonals bisect each.

Section:	8 – 3 Show that a Quadrilateral is a Parallelogram	
Essential Question	How can you prove that a quadrilateral is a parallelogram?	

If	Then
both pairs of opposite sides of a quadrilateral are congruent,	the quadrilateral is a parallelogram.
$\overline{PQ} \cong \overline{RS}$ and $\overline{QR} \cong \overline{PS}$	□ PQRS
$P \xrightarrow{Q} H R$	P S R

If both pairs of opposite angles of a quadrilateral are congruent,	Then the quadrilateral is a parallelogram.
$\angle P \cong \angle R$ and $\angle Q \cong \angle S$.	$\Box PQRS$
P S R	P S R

If	Then
one pair of opposite sides of a quadrilateral is congruent AND parallel,	the quadrilateral is a parallelogram.
$\overline{QR} \cong \overline{PS} \text{ and } \overline{QR} \parallel \overline{PS}$ OR $\overline{PQ} \cong \overline{RS} \text{ and } \overline{PQ} \parallel \overline{RS},$	$\Box PQRS$
P S R	P S R

Ex1: The figure shows part of a stair railing. Explain how you know the support bars \overline{MP} and \overline{NQ} are parallel.

Since MP = NQ and MN = PQ, MNQP is a parallelogram. Therefore, $\overline{MP} \parallel \overline{NQ}$

Ex2: For what value of *x* is quadrilateral *RSTU* a parallelogram?

Ex3: Suppose you place two straight narrow strips of paper of equal length on top of two lines of a sheet of notebook paper. If you draw a segment to join their left ends and a segment to join their right ends, will the resulting figure be a parallelogram? Explain.

Yes, since the segments are congruent AND the lines on the notebook paper are parallel, we can use the theorem that says "If one pair of opposite sides of a quadrilateral is congruent and parallel, then the quadrilateral is a parallelogram"

Ex4: Show that *FGHJ* is a parallelogram.

Option 1: Show BOTH pair of opposite sides congruent.

Option 2: Show one pair of opposite sides congruent AND parallel (have the same slope.)

Option 3: Show BOTH pair of opposite sides parallel.

For example:
$$FJ=GH=\sqrt{5}$$

 $m_{\overline{FJ}} = m_{\overline{GH}} = \frac{-1}{2}$
 $\therefore \square FGHJ$

Closure:

- How do you prove that a quadrilateral is a parallelogram? Show that the quadrilateral has...
 - **1.** both pair of opposite sides parallel.
 - 2. both pair of opposite sides congruent.
 - 3. one pair of opposites sides parallel AND congruent.
 - **4.** both pair of opposite angles congruent.
 - **5.** diagonals that bisect each other.

Section:	8 – 4 Properties of Rhombuses, Rectangles, and Squares
Essential Question	What are the properties of parallelograms that have all sides or all angles congruent?

Key Vocab:

Rhombus	A parallelogram with <mark>four congruent sides</mark>	$\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{AD}$
Rectangle	A parallelogram with <mark>four right</mark> angles	$E \qquad F \qquad F \qquad G$ $m \angle E = m \angle F = m \angle g = m \angle H = 90^{\circ}$
Square	A parallelogram with <mark>four congruent sides AND four right angles</mark>	$I \longrightarrow I$ $I \longrightarrow I$ K $\overline{IJ} \cong \overline{JK} \cong \overline{KL} \cong \overline{LI}$

Rhombus Corollary		
A quadrilateral is a rhombus IFF it has four congruent sides.		
If $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$,	Then quad <i>ABCD</i> is a rhombus.	
If quad <i>ABCD</i> is a rhombus,	Then $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.	

Theorems:

Student Notes \rightarrow Geometry \rightarrow Chapter 8 – Quadrilaterals \rightarrow KEY

Ex1: For any rectangle *ABCD*, decide whether the statement is *always*, *sometimes* or *never* true.

- a.) $\overline{AB} \cong \overline{CD}$ Always; All rectangle are parallelograms and opposite sides of a parallelogram are congruent.
- b.) $\overline{AB} \cong \overline{BC}$

Sometimes; $\overline{AB} \cong \overline{BC}$ provided that the rectangle ABCD is a square. But not all rectangles are squares.

Ex2: Classify the special quadrilateral. Explain your reasoning.

It is a rhombus. Its is a parallelogram because opposite angles are congruent. Since a pair of adjacent sides are congruent, all four side are congruent.

Ex3: You are building a case with glass shelves for collectibles.

a.) Given the shelf measurements in the diagram, can you assume that the shelf is a square? Explain.

No, it has four congruent sides so it is a rhombus. However, we do not know whether the angles are right angles.

b.) You measure the diagonals and find they are both 33.94 inches. What can you conclude about the shape?

It is a square.

Ex4: Sketch a square *EFGH*. List everything that you know about it.

- Opposite sides are parallel
- All sides are congruent
- All angles are congruent right angles
- The diagonals are congruent and perpendicular and they bisect each other
- Each diagonal bisects a pair of opposite angles.

Closure:

• Complete the Venn diagram for the properties that are ALWAYS true.

Section:	8 – 5 Use Properties of Trapezoids and Kites	
Essential Question	What are the main properties of trapezoids and kites?	

Key Vocab:

Trapezoid	A quadrilateral with <i>exactly</i> one pair of parallel sides.	
Bases	The parallel sides of a trapezoid.	Base
Base Angles	Either pair of angles whose common side is a base of a trapezoid.	leg Base angles
Legs	The nonparallel sides of a trapezoid.	Base
lsosceles Trapezoid	A trapezoid with congruent legs.	$H \xrightarrow{E} \mathbf{F} \mathbf{G}$
Midsegment of a Trapezoid	A segment that <mark>connects the</mark> midpoints of the legs of a trapezoid.	\overline{MP} is the midsegment

Kite	A quadrilateral that has two pairs of consecutive congruent sides, but in which opposite sides are NOT congruent.	A D B C $\overline{AD} \cong \overline{AB} \text{ and } \overline{CD} \cong \overline{BC}$
------	--	--

Ex1: Show that *XYZW* is a trapezoid.

Ex2: The top of the table in the diagram is an isosceles trapezoid. Find $m \angle N, m \angle O$, and $m \angle P$.

Ex3: In the diagram, *HK* is the midsegment of the trapezoid *DEFG*. Find *HK*.

Ex4: Find $m \angle C$ in the kite shown.

 $360 = 140 + 84 + 2m \angle C$ $68^\circ = m \angle C$

Section:	8 – 7 Area of Special Quadrilaterals
Essential Question	How can you find areas of special quadrilaterals?

Formulas:

Area of a Parallelogram	A = bh	h
Area of a Rhombus	$A = \frac{1}{2}d_1d_2$	d ¹
Area of a Trapezoid	$A = \frac{1}{2}h(b_1 + b_2)$	$ \begin{array}{c} b \\ h \\ b \\ b \end{array} $

Show:

Ex1: Find the area of the parallelogram.

$h = 6 \sin 45^\circ$

 $A = (6\sin 45^\circ)(9) \approx 38.2$

Ex2: In the rhombus *ABCD*, AC = 20 and BD = 15. The area can be found in more than one way. Fill in the blanks for each formula, then compute the area.

a) $A = _12.5_.12 = _150_.$ Uses parallelogram area formula b) $A = \frac{1}{2} \cdot _20_.15_.= _150_.$ Uses rhombus area formula c) $A = 4 \cdot \frac{1}{2} \cdot _12.5_. \cdot _6_.= _150_.$ Uses triangle area formula

