CHAPTER 6 - Similarity

In this chapter we address... Big IDEAS:

1) Using ratios and proportions to solve geometry problems
2) Showing that triangles are similar
3) Using indirect measurement and similarity

Section:	$6-\mathbf{0}$ Ratios and Proportions
Essential Question	What are the properties of proportions?

Warm Up:

Key Vocab:

Ratio	A comparison of two numbers. Written as a fraction (never a decimal) or using a colon. Should always be written in simplest form Examples: $\frac{2}{3}$ or $2: 3$
Proportion	An equation that states two ratios are equal Examples: $\frac{2}{3}=\frac{4}{6}$ or $5: 7=15: 21$
Extended Proportion	An equation relating three or more ratios
Examples: $\frac{2}{3}=\frac{4}{6}=\frac{6}{9}$	

Properties:

Extremes Means Property

The product of the means is equal to the product of the extremes
Think cross multiply

If $\frac{2}{3}=\frac{4}{6}$	Then $2(6)=3(4)$

Properties of Proportions	
If	Then
you interchange the means (or the extremes),	you get an equivalient proportion
If $\frac{2}{3}=\frac{4}{6}$	Then $\frac{2}{4}=\frac{3}{6} \quad$ OR $\quad \frac{6}{3}=\frac{4}{2}$

If	Then You take the reciprocals of both the ratios, you get an equivalent proportion
If $\frac{2}{3}=\frac{4}{6}$	Then $\frac{3}{2}=\frac{6}{4}$

Show:

Ex 1: Express the ratio in simplest form.
a. $\frac{50}{35}=\frac{10}{7}$
b. $26: 91=2: 7$

Ex 2: Find the measure of each angle.
a. Two complementary angles have measure in ratio $2: 3$

$$
\begin{array}{rlrl}
2 x+3 x & =90 & 2 x=36^{\circ} \\
x & =18 & 3 x=54^{\circ}
\end{array}
$$

b. The measures of the angles of a triangle are in the ratio 2:2:5.

$$
\begin{aligned}
2 x+2 x+5 x & =180 & & 2 x=40^{\circ} \\
x & =20 & & 5 x=100^{\circ}
\end{aligned}
$$

Ex 2 continued: Find the length of each side.
c. The perimeter of a triangle is 48 cm and the lengths of the sides are in the ratio 3:4:5. Find the length of each side.

$$
\begin{array}{rl}
3 x+4 x+5 x=48 & 3 x=12 \mathrm{~cm} \\
x=4 & 4 x=16 \mathrm{~cm} \\
5 x=20 \mathrm{~cm}
\end{array}
$$

Ex 3: Use the properties of proportions to complete each statement.
a. If $\frac{x}{5}=\frac{3}{2}$, then $2 x=15$
b. If $\frac{x}{7}=\frac{y}{8}$, then $\frac{x}{y}=\frac{7}{8}$
c. If $\frac{8}{y}=\frac{3}{x}$, then $\frac{y}{8}=\frac{x}{3}$
d. If $\frac{7}{x}=\frac{3}{4}$, then $3 x=28$
e. If $4: x=y: 8$, then $8: x=y: 4$
f. If $4: x=y: 8$, then $x y=32$

Ex 4: Find the value of x.
a. $\frac{6}{x}=\frac{3}{5}$
b. $\frac{x+2}{12}=\frac{1}{2}$
c. $\frac{x+3}{x-5}=\frac{5}{2}$
$2 x+4=12$
$2 x=8$ $x=4$

$$
\begin{aligned}
2 x+6 & =5 x-25 \\
31 & =3 x \\
\frac{31}{3} & =x
\end{aligned}
$$

Section:	$6-1$ Use Similar Polygons
Essential Question	If two figures are similar, how do you find the length of a missing side?

Warm Up:

Key Vocab:

Similar Polygons	Two polygons such that their corresponding angles are congruent and the lengths of corresponding sides are proportional	
Scale Factor	The ratios of the lengths of two corresponding sides of two similar polygons.	
		The scale factor of $E F G H$ to $K L M N$ is $\frac{5}{4}$

Theorems:

	Perimeters of Similar Polygons	
If two polygons are similar,	then the ratio of their perimeters is equal to the ratios of their corresponding side lengths.	
$A B C D \sim E F G H$	$\frac{A B+B C+C D+D A}{E F+F G+G H+H E}=\frac{A B}{E F}=\frac{B C}{F G}=\frac{C D}{G H}=\frac{D A}{H E}$	

Show:

Ex 1: In the diagram, $\triangle A B C \sim \triangle D E F$.
a.) List all pairs of congruent angles.

$$
\begin{aligned}
& \angle A \cong \angle D \\
& \angle B \cong \angle E \\
& \angle C \cong \angle F
\end{aligned}
$$

b.) Check that the ratios of corresponding side lengths are equal.

$$
\frac{A B}{D E}=\frac{5}{7} \quad \frac{B C}{E F}=\frac{5}{7} \quad \frac{A C}{D F}=\frac{5}{7}
$$

c.) Write the ratios of the corresponding side lengths in a statement of proportionality.

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

Ex 2: Determine whether the polygons are similar. If they are, write a similarity statement and find the scale factor of RSTU to $D E F G$.

All corresponding angles are congruent
AND all corresponding sides are proportional.
$R S T U \sim D E F G$. The scale factor is $3: 2$

Ex 2: In the diagram, $\triangle A B C \sim \Delta G H I$. Find the value of x.

$$
\begin{aligned}
\frac{12}{8} & =\frac{x}{16} \\
x & =24
\end{aligned}
$$

Ex 4: You are constructing a rectangular play area. A playground is rectangular with length 25 meters and width 15 meters. The new area will be similar in shape, but only 10 meters in length.
a.) Find the scale factor of the new play area to the playground.

2:5
b.) Find the perimeter of the playground and the play area.

80 m and 32 m

| Corresponding |
| :--- | :--- |
| Lengths in Similar |
| Polygons |\quad| If two polygons are similar, then the ratio of any two corresponding |
| :--- |
| lengths in the polygons is equal to the scale factor of the similar |
| polygons |

Ex 3: In the diagram, $\triangle M N P \sim \Delta R S T$. Find the length of the altitude $\overline{N L}$.

Section:	$\mathbf{6}-\mathbf{3}$ Prove Triangles Similar by AA~
Essential Question	How can you show that two triangles are similar?

Warm Up:

Postulates:

Angle-Angle (AA~) Similarity Postulate	
If two angles of one triangle are congruent to two angles of another triangle,	then the two triangles are similar
$\angle K \cong \angle Y$ and $\angle J \cong \angle X$	$\Delta I K L \sim \triangle X Y Z \rightarrow \angle L \cong \angle Z, \frac{K J}{X Y}=\frac{J L}{X Z}=\frac{K L}{Y Z}$

- If two angles in a triangle are congruent to two angles in another, then the $3^{\text {rd }}$ angles are congruent.
- Therefore, two pair of congruent angles is enough to show that all angles are congruent, so the triangles have the same shape, meaning that they are similar.

Things to look for when using the AA~ Postulate:
Two pair of angles that are marked congruent

| Vertical angles are always congruent. | When lines are parallel, corresponding
 angles are congruent. |
| :---: | :---: | :---: |
| Reflexive angles are always congruent. | When lines are parallel, alternate |
| Interior angles are congruent. | |

Show:

Ex1: Determine whether the triangles are similar. If they are, write a similarity statement. Explain your reasoning.
$\angle Y \cong \angle B$ because right angles are congruent. By the Triangle Sum Theorem, $m \angle Z=37$, so $m \angle Z=m \angle C . \therefore \Delta A B C \sim \triangle X Y Z$ by the AA Similarity Post.

Ex2 : Show that the two triangles are similar.
a.)

$m \angle Q R P=44$ and $m \angle Q T S=44$, so $\angle Q R P \cong \angle Q T S$. Also, $\angle Q \cong \angle Q$.
$\therefore \triangle Q R P \sim \triangle Q T S$ by the $A A$ Similarity Post.
b.)

$\angle E F G \cong \angle J F H$ because vertical angles are congruent. Also, since $\overline{E G} \| \overline{J H}, \angle E \cong \angle J$ by the Alternate Interior Angle Theorem. \therefore $\Delta E F G \sim \Delta J F H$ by the $A A$ Similarity

Ex3: A school building casts a shadow that is 26 feet long. At the same time a student standing nearby, who is 71 inches tall casts a shadow that is 48 inches long. How tall is the building to the nearest foot?
A. 18 ft
B. 33 ft
C. 38 ft
D. 131 ft

Section:	$\mathbf{6 - 4}$ Prove Triangles Similar by SSS \sim and SAS \sim
Essential Question	How do you prove that two triangles are similar by SSS~ and SAS~?

Warm Up:

Theorems:

Show:
Ex 1: Is either $\triangle P Q R$ or $\triangle S T U$ similar to $\triangle X Y Z$?
$\triangle X Y Q \sim \triangle P Q R$ by SSS~
$\triangle X Y Z$ is not similar to $\triangle S T U$.

Ex 2: Is $\triangle X Y W$ similar to $\triangle J H K$?.

$$
\begin{aligned}
& \text { Yes, by SAS~ } \\
& \frac{18}{16}=\frac{27}{24} ; \angle J W Y \cong \angle K
\end{aligned}
$$

Ex 2: If $\angle Z \cong \angle R$, find the value of x that makes $\triangle X Y Z \sim \triangle P Q R$.

$$
\begin{aligned}
\frac{x+6}{21} & =\frac{12}{28} \\
28 x+168 & =252 \\
28 x & =84 \\
x & =3
\end{aligned}
$$

