Chapter 1 – Essentials of Geometry

In this chapter we address three **Big IDEAS***:*

- 1) Describing geometric figures
- 2) Measuring geometric figures

3) Understanding equality and congruence

Section:	1 – 1 Identify Points, Lines, and Planes
Essential Question	

Warm Up:

	Undefined Terms					
	A basic figure that is not defined in terms of					
Point	An undefined term in geometry Has dimension –	A				
Line	An undefined term in geometry Has dimension –	S T m → ;;				
Plane	An undefined term in geometry Has dimensions –	$E \qquad F \\ \bullet G \qquad \mathcal{R}$				

	Defined Terms				
Terms that	Terms that can be described using other figures such as or				
Collinear Points	Points that lie on the				
Coplanar Points	Points that lie in the				
Line Segment	Part of a line that consists of two points, called endpoints, and	СВ			
Ray	Half of a line that consists of	A B			
Opposite Rays		$\overrightarrow{SR} \text{ and } \overrightarrow{ST} \text{ are } \$			
Intersection					

Ex 1:

- a. Give two other names for \overleftarrow{BD} .
- b. Give another name for plane *T*.
- c. Name three points that are collinear.
- d. Name four points that are coplanar.

Ex 2:

- a. Give another name for \overline{PR} .
- b. Name all rays with endpoint *Q*. Which of these rays are opposite rays?

Section:	1 – 2 Use Segments and Congruence
Essential Question	

<u>Warm Up:</u>

Postulate or Axiom	
Theorem	
Between	When three points are, you can say one point is the other two.
	Line segments that have the
Congruent Segments	

Postulates:

S e	gment Addition	Postulate
If	then	AC A B C
If	then	

Show:

Ex 1: The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Bismarck to Fargo.

Ex 2: Find *CD*.

Ex 3: Point *S* is between *R* and *T* on \overline{RT} . Use the given information to write an equation in terms of *x*. Solve the equation. Then find *RS* and *ST*.

 $RS = 3x - 16 \qquad ST = 4x - 8 \qquad RT = 60$

Closure:

• Explain the difference between congruence and equality.

1/ C! 1.6.... D.J. . 1

Section:	1 – 2 ½ Simplifying Radicals
Essential Question	

Warm Up:

	If, then If the square of a number r is a number s, then
Square Root	Examples: $2 = \sqrt{4}$ two is the square root of four $4 = \sqrt{16}$ four is the square root of sixteen
Radical	$\sqrt{32}$
Radicand	
	A radical expression is in simplest radical form if
Simplest Radical Form	Non-Example: $\sqrt{18}$ 9 is perfect square factor of 18. Its simplest radical form is $3\sqrt{2}$.
Rationalizing	Rationalizing the denominator is a process of
the Denominator	Example: $\frac{4}{\sqrt{3}}$ Step 1: $\frac{4}{\sqrt{3}}$ Step 2: $\frac{4\sqrt{3}}{\sqrt{9}}$ Step 3: $\frac{4\sqrt{3}}{3}$

Key Concepts:

Simplifying Radicals:			
$\left(\sqrt[n]{b}\right)^n = \sqrt[n]{b^n} = b$			
$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$	The square root of a product is the product of the square roots →		
$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	The square root of a quotient is the quotient of the square roots →		
$\blacktriangleright \sqrt{a^2 + b^2} \neq \sqrt{a^2} + \sqrt{b^2}$	Caution!		

Simplify.

1.
$$\sqrt{50}$$
 2. $\sqrt{56}$

3.
$$\sqrt{12}$$
 4. $\sqrt{\frac{2}{5}}$

5.
$$\sqrt{5^2}$$
 6. $\sqrt{(-3)^2}$

7.
$$\sqrt{25 \cdot 9}$$
 8. $\sqrt{\frac{16}{25}}$

Closure:

• How do you know when a square root is fully simplified?

Section:	1 – 3 Use Midpoint and Distance Formulas
Essential Question	

Warm Up:

Midpoint	The point that divides the segment into	A M B σ −− − •
Segment Bisector	that intersects the segment at its	

Key Concepts:

Show:

Ex 1: Point S is the midpoint of \overline{RT} . Find ST.

Ex 2: Find *PQ* given the coordinates for its endpoints are P(2,5) and Q(-4,8). Give an exact answer AND approximate answer rounded to the nearest hundredth.

Ex 3:

a. The endpoints of \overline{GH} are G(7, -2) and H(-5, -6). Find the coordinates of the midpoint *P*.

b. The midpoint of \overline{GH} is M(4, -1). One endpoint is G(5, 3). Find the coordinates of the other endpoint H.

Section:	1 – 4 Measure and Classify Angles
Essential Question	

<u>Warm Up:</u>

1		

Angle	Notation:	B
Sides	Notation:	
Vertex		
Congruent Angles		AB

Angle Bisector	A ray that divides an angle into	Y W Z
----------------	----------------------------------	----------

	Classifying Angles			
Acute Angle	A			
Right Angle				
Obtuse Angle	A			
Straight Angle	▲ Å			

Postulate:

	Angle Addition P	ostulate
If <i>P</i> is in the interior of $\angle RST$,	Then	R m∢RST S m∢RSP m∢RSP T

Ex 2: Use the diagram to find the measure of each angle <u>and</u> classify the angle.

- a. ∠DEC ______
 b. ∠DEA ______
 c. ∠CEB ______
- d. ∠*DEB* _____

Ex 3: If $m \angle XYZ = 72^{\circ}$, find $m \angle XYW$ and $m \angle ZYW$.

Ex 4: In the diagram to the right, \overrightarrow{YW} bisects $\angle XYZ$ and $m \measuredangle XYW = 18^\circ$. Find $m \measuredangle XYZ$. Explain.

Closure:

- Explain the difference between congruence and equality in terms of angles.
- What are the ways to classify angles?

Section:	1 – 5 Describe Angle Pair Relationships
Essential Question	

Warm Up:

Complementary Angles		Adjacent Non-adjacent
Supplementary Angles		Adjacent Non-adjacent
Adjacent Angles	Two angles that share a common , but have no common interior points	
Linear Pair		
Vertical Angles	Two angles whose sides form two pairs of Examples:	

Show:

Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.

Ex 2: a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1 = 17^{\circ}$, find $m \angle 2$.

b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3 = 119^\circ$, find $m \angle 4$.

Ex 3: Two roads intersect to form supplementary angles, $\angle XYW$ and $\angle WYZ$. Find $m \angle XYW$ and $m \angle WYZ$.

Ex 4: Identify all of the linear pairs and all of the vertical angles in the figure.

Ex 5: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

Ex 6: The measure of one angle is 7 times the measure of its complement. Find the measure of each angle.

Closure:

• Compare and contrast complementary and supplementary angles.

_ 6 Classify Polygons

Section:	1-6	Classify Polygons
Essential Question		

Warm Up:

Polygon	each side intersects exactly, so that no two sides with a common endpoint are collinear	B A E
Sides	Each segment that forms a polygon	Sides:
Vertex	Each of a side of a polygon	Vertices:

Convex	A polygon where no line containing a side of the polygon contains a of the polygon	interior
Concave	A polygon with one or more interior angles measuring	
		Example:
n-gon		P
n-gon Equilateral	A polygon with all of its congruent	
n-gon Equilateral Equiangular	A polygon with all of its congruent A polygon with all of its congruent	

Show:

Ex 1: Tell whether each figure is a polygon. If it is, tell whether it is concave or convex.

a.

Ex 2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.

Ex 3: A rack for billiard balls is shaped like an equilateral triangle. Find the length of a side.

