CHAPTER 1 - EsSEntials of GEOMETRY

In this chapter we address three Big IDEAS:

1) Describing geometric figures
2) Measuring geometric figures
3) Understanding equality and congruence

Section:	$\mathbf{1} \mathbf{- 1}$ Identify Points, Lines, and Planes
Essential Question	

Warm Up:

Key Vocab:

Undefined Terms		
A basic figure that is not defined in terms of ____ .		
Point	An undefined term in geometry Has \qquad dimension - \qquad \qquad \qquad	A
Line	An undefined term in geometry Has \qquad dimension - \qquad	
Plane	An undefined term in geometry Has \qquad dimensions - \qquad \qquad \qquad	or \qquad

Defined Terms		
Terms that can be described using other figures such as ____ or _____		
Collinear Points	Points that lie on the ___	
Coplanar Points	Points that lie in the _____	
Line Segment	Part of a line that consists of two points called endpoints, and \qquad	\qquad
Ray	Half of a line that consists of	
Opposite Rays		$\overrightarrow{S R}$ and $\overrightarrow{S T}$ are \qquad S is the \qquad
Intersection		

Ex 1:

a. Give two other names for $\stackrel{\rightharpoonup}{B D}$.
b. Give another name for plane T.
c. Name three points that are collinear.
d. Name four points that are coplanar.

Ex 2:

a. Give another name for $\overline{P R}$.
b. Name all rays with endpoint Q. Which of these rays are opposite rays?

Section:	$1-2$ Use Segments and Congruence
Essential Question	

Warm Up:
\square

Key Vocab:

Postulates:

Ruler Postulate	
Allows for the creation of a measuring system.	
The real number that corresponds to a point is the	
The distance between points A and B, \qquad is the \qquad	

Segment Addition Postulate			
If	then		
If	then		

Show:

Ex 1: The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Bismarck to Fargo.

Ex 2: Find $C D$.

Ex 3: Point S is between R and T on $\overline{R T}$. Use the given information to write an equation in terms of x. Solve the equation. Then find $R S$ and $S T$.

$$
R S=3 x-16 \quad S T=4 x-8 \quad R T=60
$$

Closure:

- Explain the difference between congruence and equality.

Section:	$\mathbf{1 - 2 1} \mathbf{2}$ Simplifying Radicals
Essential Question	

Warm Up:
\square
Key Vocab:

Square Root	If \qquad , then \qquad If the square of a number r is a number s, then
	Examples: $2=\sqrt{4} \quad$ two is the square root of four $4=\sqrt{16}$ four is the square root of sixteen
Radical	$\sqrt{32}$
Radicand	\checkmark
Simplest Radical Form	A radical expression is in simplest radical form if
	Non-Example: $\sqrt{18} \quad 9$ is perfect square factor of 18. Its simplest radical form is $3 \sqrt{2}$.
Rationalizing the Denominator	Rationalizing the denominator is a process of
	Example: $\frac{4}{\sqrt{3}} \quad$ Step 1: $\frac{4}{\sqrt{3}}$ Step 2: $\frac{4 \sqrt{3}}{\sqrt{9}} \quad$ Step 3: $\frac{4 \sqrt{3}}{3}$

Key Concepts:

Simplifying Radicals: $(\sqrt[n]{b})^{n}=\sqrt[n]{b^{n}}=b$	
$\sqrt{a b}=\sqrt{a} \bullet \sqrt{b}$	The square root of a product is the product of the square roots \rightarrow
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$	The square root of a quotient is the quotient of the square roots \rightarrow
$>\sqrt{a^{2}+b^{2}} \neq \sqrt{a^{2}}+\sqrt{b^{2}}$	Caution!

Simplify.

1. $\sqrt{50}$
2. $\sqrt{56}$
3. $\sqrt{12}$
4. $\sqrt{\frac{2}{5}}$
5. $\sqrt{5^{2}}$
6. $\sqrt{(-3)^{2}}$
7. $\sqrt{25 \cdot 9}$
8. $\sqrt{\frac{16}{25}}$

Closure:

- How do you know when a square root is fully simplified?

Section:	$\mathbf{1 - 3}$ Use Midpoint and Distance Formulas
Essential Question	

Warm Up:
\square
Key Vocab:

Midpoint	The point that divides the segment into \qquad	
Segment Bisector	that intersects the segment at its \qquad -.	

Key Concepts:

| If |
| :--- | :--- | :--- | :--- |
| If
 on a coordinate plane, |

Show:

Ex 1: Point S is the midpoint of $\overline{R T}$. Find $S T$.

Ex 2: Find $P Q$ given the coordinates for its endpoints are $P(2,5)$ and $Q(-4,8)$. Give an exact answer AND approximate answer rounded to the nearest hundredth.

Ex 3:

a. The endpoints of $\overline{G H}$ are $G(7,-2)$ and $H(-5,-6)$. Find the coordinates of the midpoint P.
b. The midpoint of $\overline{G H}$ is $M(4,-1)$. One endpoint is $G(5,3)$. Find the coordinates of the other endpoint H.

Section:	$\mathbf{1 - 4}$ Measure and Classify Angles
Essential Question	

Warm Up:

Key Vocab:

Classifying Angles		
Acute Angle		
Right Angle		
Obtuse Angle		
Straight Angle		

Postulate:

Ex 1: Name each angle that has N as a vertex.

\qquad
\qquad
\qquad

Ex 2: Use the diagram to find the measure of each angle and classify the angle.

a. $\angle D E C$ \qquad
b. $\angle D E A$ \qquad
c. $\angle C E B$ \qquad
d. $\angle D E B$ \qquad

Ex 3: If $m \angle X Y Z=72^{\circ}$, find $m \angle X Y W$ and $m \angle Z Y W$.

Ex 4: In the diagram to the right, $\overrightarrow{Y W}$ bisects $\angle X Y Z$ and $m \npreceq X Y W=18^{\circ}$. Find $m \npreceq X Y Z$. Explain.

Closure:

- Explain the difference between congruence and equality in terms of angles.
- What are the ways to classify angles?

Section:	$\mathbf{1 - 5}$ Describe Angle Pair Relationships
Essential Question	

Warm Up:

Key Vocab:

Complementary Angles		
Supplementary Angles		Adjacent Non-adjacent
Adjacent Angles	Two angles that share a common \qquad , but have no common interior points	
Linear Pair		$\stackrel{1 / 2}{\longleftrightarrow}$
Vertical Angles	Two angles whose sides form two pairs of \qquad Examples:	

Show:
Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.

Ex 2: a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1=17^{\circ}$, find $m \angle 2$.
b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3=119^{\circ}$, find $m \angle 4$.

Ex 3: Two roads intersect to form supplementary angles, $\angle X Y W$ and $\angle W Y Z$. Find $m \angle X Y W$ and $m \angle W Y Z$.

Ex 4: Identify all of the linear pairs and all of the vertical angles in the figure.

Ex 5: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

Ex 6: The measure of one angle is 7 times the measure of its complement. Find the measure of each angle.

Closure:

- Compare and contrast complementary and supplementary angles.

| Section: | $1-6 \quad$ Classify Polygons |
| :--- | :--- | :--- |
| Essential
 Question | |

Warm Up:
\square
Key Vocab:

Polygon	$\overline{\text { each side intersects exactly }}$ so that no two sides with a common endpoint are collinear,	
Sides	Each \qquad segment that forms a polygon	Sides:
Vertex	Each \qquad of a side of a polygon	Vertices:

Convex	A polygon where no line containing a side of the polygon contains a \qquad of the polygon \qquad	
Concave	A polygon with one or more interior angles measuring \qquad \qquad \qquad	
n-gon		Example:
Equilateral	A polygon with all of its \qquad congruent	
Equiangular	A polygon with all of its \qquad \qquad congruent	
Regular	A \qquad polygon that has \qquad and \qquad congruent	

Show:

Ex 1: Tell whether each figure is a polygon. If it is, tell whether it is concave or convex.
a.

Ex 2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.
a.

b.

c.

Ex 3: A rack for billiard balls is shaped like an equilateral triangle. Find the length of a side.

