CHAPTER 7 - Right Triangles \& Trigonometry

Big IDEAS:

1) Using Pythagorean Theorem and its converse.
2) Using special relationships in right triangles.
3) Using trigonometric ratios to solve right triangles.

Section:	$\mathbf{7 - 1}$ Applying the Pythagorean Theorem
Essential Question	If you know the lengths of two sides of a right triangle, how do you find the length of the third side?

Warm Up:
\square
Key Vocab:

		The most common are:
Pythagorean	A set of three positive integers $a, b, 4,5$	
Triple	and c that satisfy the equation	$5,12,13$
$c^{2}=a^{2}+b^{2}$	$8,15,17$	
		$7,24,25$

Theorems:

Pythagorean Theorem		
In a right triangle, the square of the length of the hypotenuse		
is equal to the sum of the squares of the lengths of the legs.		

Show:

Ex 1: Find the length of the hypotenuse of a right triangle with legs measuring 5 and 12.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=5^{2}+12^{2} \\
& c^{2}=25+144 \text { The hypotenuse is } 13 \text { units. } \\
& \sqrt{c^{2}}=\sqrt{169} \\
& c=13
\end{aligned}
$$

Ex 2: Randy made a ramp for his dog to get into his truck. The ramp is 6 feet long and the bed of the truck is 3 feet above the ground. Approximately how far from the back of the truck does the ramp touch the ground?

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& 6^{2}=3^{2}+b^{2} \\
& 36=9+b^{2} \\
& 36-9=9-9+b^{2} \\
& \sqrt{27}=\sqrt{b^{2}} \\
& b=\sqrt{9 \cdot 3} \\
& b=3 \sqrt{3} \approx 5.2 \mathrm{ft}
\end{aligned}
$$

Ex 3: Find the area of an isosceles triangle with side lengths 20 inches, 20 inches and 24 inches.

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & \\
20^{2}=12^{2}+b^{2} & A=\frac{1}{2} b h \\
400=144+b^{2} & \\
400-144=144-144+b^{2} & A=\frac{1}{2}(16)(24) \\
\sqrt{256}=\sqrt{b^{2}} & A=192 \mathrm{in}^{2} \\
b=\sqrt{256} & \\
b=16 \mathrm{in} &
\end{array}
$$

Ex 4: The given lengths are two sides of a right triangle. All three side lengths of the triangle are integers and together form a Pythagorean triple. Find the length of the third side and tell whether it is a leg or the hypotenuse.
a. 12,13
$5-\operatorname{leg}$
b. 21,72
75 - hypotenuse
c. 9,15

$$
12-\operatorname{leg}
$$

Section:	$\mathbf{7 - 2}$ Use the Converse of the Pythagorean Theorem
Essential Question	How can you use the sides of a triangle to determine if it is right triangle?

Warm Up:
\square

Theorems:

Converse of the Pythagorean Theorem					
If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the two shorter sides,	the triangle is a right triangle.				
	$c^{2}=a^{2}+b^{2}$				
If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the two shorter sides,	the triangle is an acute triangle.				

Show:

Ex 1: Tell if the given triangle is right, acute, or obtuse - sides are 11, 20, 23.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& 23^{2} \stackrel{?}{=} 11^{2}+20^{2} \\
& \\
& 529 \stackrel{?}{=} 121+400 \stackrel{?}{2} \stackrel{?}{=} a^{2}+b^{2} \\
& 529 \stackrel{?}{=} 521 \\
& 529>521 \\
& 529 \neq 521
\end{aligned}
$$

Ex 2: Tell if the given triangle is right, acute, or obtuse - sides are $10,8,2 \sqrt{41}$.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& (2 \sqrt{41})^{2} \stackrel{?}{=} 8^{2}+10^{2} \\
& 164 \stackrel{?}{=} 64+100 \\
& 164 \stackrel{?}{=} 164
\end{aligned} \text { Since } c^{2}=a^{2}+b^{2}, \text { the triangle is right. }
$$

Ex 3: The sides of a triangle have lengths $x, x-8,40$. If the length of the longest side is 40 , what values of x will make the triangle acute?

$$
\begin{aligned}
& c^{2}<a^{2}+b^{2} \\
& 40^{2}<x^{2}+(x-8)^{2} \\
& 1600<x^{2}+x^{2}-16 x+64 \\
& 0<2 x^{2}-16 x-1536 \\
& 0<x^{2}-8 x-768 \\
& 0<(x+24)(x-32) \\
& x>-24 \\
& x=32
\end{aligned}
$$

Section:	$\mathbf{7 - 3}$ Use Similar Right Triangles
Essential Question	How can you find the length of the altitude to the hypotenuse of a right triangle?

Warm Up:
\square
Key Vocab:

	For two positive numbers $\boldsymbol{a} \& \boldsymbol{b}$, the positive number \boldsymbol{x} that satisfies Geometric Mean
$\frac{a}{x}=\frac{x}{b}$ So, $x^{2}=a b$ and $x=\sqrt{a b}$.	
Example:	
$\frac{4}{x}=\frac{x}{16}$	
$x=\sqrt{4 \cdot 16}$	
$x=8$	

Theorems:

| If |
| :--- | :--- | :--- |
| the altitude is drawn to the |
| hypotenuse of a right |
| triangle, |\quad| Then |
| :--- |
| the two triangles formed are |
| similar to the original |
| triangle and to each other. |

Geometric Mean (Altitude) Theorem							

Geometric Mean (Leg) Theorem							

Show:

Ex 1: Identify the similar triangles in the diagram.

Ex 2: Find the value of k.
Geometric Mean Leg Theorem

$$
\begin{aligned}
& \frac{10}{k}=\frac{k}{2} \\
& k^{2}=20 \\
& \sqrt{k^{2}}=\sqrt{20} \\
& k=\sqrt{4} \sqrt{5} \\
& k=2 \sqrt{5}
\end{aligned}
$$

Ex 3: Find the value of k.

Geometric Mean Altitude Theorem

$$
\begin{aligned}
\frac{16}{k} & =\frac{k}{9} \\
144 & =k^{2} \\
12 & =k
\end{aligned}
$$

Ex 4: The figure shows the side view of a tool shed. What is the maximum height of the shed?

Closure:

- Describe the transformation(s) that move the two smaller triangles onto each other.

The smaller triangles can be rotated onto each other

- Describe the transformation(s) that move either of the two smaller triangles onto the whole triangle.

The smaller triangles need to be reflected and then rotated onto the whole triangle.

Section:	$\mathbf{7 - 4}$ Special Right Triangles
Essential Question	How do you find the lengths of the sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle and a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle?

Warm Up:

Theorems:

$\begin{aligned} & 45^{\circ}-45^{\circ}-90^{\circ} \\ & \text { Triangle } \end{aligned}$	The hypotenuse is $\sqrt{2}$ times as long as each leg. Easy as $\ldots 1 x, 1 x, x \sqrt{2}$!	
$\begin{array}{\|l} 30^{\circ}-60^{\circ}-90^{\circ} \\ \text { Triangle } \end{array}$	The hypotenuse is 2 times as long as the short leg. The longer leg is $\sqrt{3}$ times as long as the shorter leg. Easy as ... $1 x, 2 x, x \sqrt{3}$!	

Show:
Ex 1: Find the length of the hypotenuse.
a.

b.

Ex 2: Find the length of the legs in the triangle.

Ex 3: Alex has a team logo patch in the shape of an equilateral triangle. If the sides are 2.5 inches long, what is the approximate height of his patch?

$$
\begin{array}{ll}
2 x=2.5 & x \sqrt{3}=1.25 \sqrt{3} \\
x=1.25 & x=2.165 \mathrm{in}
\end{array}
$$

Ex 4: Find the values of a and b. Write your answers in simplest radical form.
$15 \underbrace{\substack{60^{\circ}}}_{a}$

$$
\begin{array}{ll}
x \sqrt{3}=15 & a=x \\
\frac{x \sqrt{3}}{\sqrt{3}}=\frac{15}{\sqrt{3}} & \therefore a=5 \sqrt{3} \\
x=\frac{15}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & b=2 x \\
x=\frac{15}{3} \sqrt{3} & \therefore b=2(5 \sqrt{3} \\
x=5 \sqrt{3} & b=10 \sqrt{3}
\end{array}
$$

Ex 6: A kite is attached to a 100 foot string as shown. How far above the ground is the kite when the string forms the given angle?

a. $m \angle 1=45^{\circ}$

$$
\begin{aligned}
& \text { hyp }=x \sqrt{2} \\
& \therefore \frac{x \sqrt{2}}{\sqrt{2}}=\frac{100}{\sqrt{2}} \\
& x=\frac{100}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& x=\frac{100 \sqrt{2}}{2} \\
& x=50 \sqrt{2} \approx 70.71 \mathrm{ft}
\end{aligned}
$$

b. $m \angle 1=30^{\circ}$

$$
\begin{aligned}
& \text { hyp }=2 x \\
& \therefore \frac{2 x}{2}=\frac{100}{2} \\
& x=50 \mathrm{ft}
\end{aligned}
$$

Section:	$\mathbf{7 - 5}$ Apply the Tangent Ratio
Essential Question	How can you find a leg of a right triangle when you know the other leg and one acute angle?

Warm Up:

Key Vocab:

Trigonometric Ratio	The ratio of the lengths of two sides in a right triangle. Three common trigonometric ratios are sine, cosine, and tangent.	
Tangent Ratio	Let $\triangle A B C$, be a right triangle with acute angle $\angle A$, then $\tan A=\frac{\text { length of leg opposite } \angle \mathrm{A}}{\text { length of leg adjacent } \angle \mathrm{A}}$	leg opposite of A

Show:

Ex 1: Find the $\tan D$ and the $\tan F$. Write each answer as a fraction and as a decimal rounded to four places.

$$
\begin{aligned}
& \tan D=\frac{\text { opposite }}{\text { adjacent }}=\frac{60}{45}=\frac{4}{3} \approx 1.3333 \\
& \tan F=\frac{\text { opposite }}{\text { adjacent }}=\frac{45}{60}=\frac{3}{4} \approx 0.7500
\end{aligned}
$$

Ex 2: Find the value of x.
9

$$
\begin{aligned}
& \tan 17^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \tan 17^{\circ}=\frac{9}{x} . \\
& x \tan 17^{\circ}=9 \\
& x=\frac{9}{\tan 17^{\circ}} \\
& x \approx 29.438
\end{aligned}
$$

Ex 3: Find the height of the flagpole to the nearest foot.

$$
\begin{aligned}
& \tan 65^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \tan 65^{\circ}=\frac{x}{24} \\
& x=24 \tan 65^{\circ} \\
& x=51 \mathrm{ft}
\end{aligned}
$$

Ex 4: What is the exact value of the tangent ratio of a 30° angle?

Section:	$7-6 \quad$ Apply the Sine and Cosine Ratios
Essential Question	How can you find the lengths of the sides of a right triangle when you are given the length of the hypotenuse and one acute angle?

Warm Up:

Key Vocab:

Angle of Elevation (Incline)	The angle of sight when looking up at an object
Angle of Depression (Decline)	The angle of sight when looking down at an object

Key Concepts:

				Let $\triangle A B C$, be a right triangle with acute angle $\angle A$, then
$\sin A=\frac{\text { length of leg opposite } \angle \mathrm{A}}{\text { hypotenuse }}=\frac{\text { opposite }}{\text { hypotenuse }}$				

Another memory device ... hippos
$\frac{\text { Orange }}{\text { Hippos }} \rightarrow \sin A=\frac{\text { opposite }}{\text { hypotenuse }}$
$\begin{aligned} & \text { Have }\end{aligned} \cos A=\frac{\text { adjacent }}{\text { Always }}$
$\frac{\text { Orange }}{\text { Ankles }} \rightarrow \tan A=\frac{\text { opposite }}{\text { adjacent }}$

Show:

Ex 1: Find the $\sin A$ and $\sin B$. Write each answer as a fraction and decimal rounded to four places.

75

$$
\begin{aligned}
40^{2}+75^{2} & =c^{2} \\
85 & =c
\end{aligned}
$$

$$
\sin A=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{40}{85}=\frac{8}{17} \approx .4706
$$

$$
\sin B=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{75}{85}=\frac{15}{17} \approx .8824
$$

Ex 2: Find the $\cos P$ and $\cos R$. Write each answer as a fraction and decimal rounded to four places.

$$
\begin{aligned}
& 10^{2}+(5 \sqrt{5})^{2}=c^{2} \\
& 15=c \\
& \cos P=\frac{\operatorname{adj}}{\text { hyp }}=\frac{5 \sqrt{5}}{15}=\frac{\sqrt{5}}{3} \approx .7454 \\
& \cos R=\frac{\operatorname{adj}}{\text { hyp }}=\frac{10}{15}=\frac{2}{3} \approx .6667
\end{aligned}
$$

Ex 3: A rope, staked 20 feet from the base of a building, goes to the roof and forms an angle of elevation of 58°. To the nearest tenth of a foot, how long is the rope?

Ex 4: A pilot is looking at an airport form her plane. The angle of depression is 29°. If the plane is at an altitude of $10,000 \mathrm{ft}$, approximately how far is the air distance to the runway?

$$
\begin{aligned}
& \sin 29^{\circ}=\frac{\mathrm{opp}}{\mathrm{hyp}} \\
& x \sin 29^{\circ}=\frac{10000}{x} \cdot x \\
& \frac{x \sin 29^{\circ}}{\sin 29^{\circ}}=\frac{10000}{\sin 29^{\circ}} \\
& x=\frac{10000}{\sin 29^{\circ}} \approx 20626.7 \mathrm{ft}
\end{aligned}
$$

Ex 5: A dog is looking at a squirrel at the top of a tree. The distance between the two animals is 55 feet and the angle of elevation is 64°. How high is the squirrel and how far is the dog from the base if the tree?

$$
\begin{aligned}
& \sin 64^{\circ}=\frac{\text { opp }}{\text { hyp }} \\
& 55 \sin 64^{\circ}=\frac{x}{55} \cdot .55^{\circ} \\
& x=55 \sin 64^{\circ} \\
& x \approx 49.4 \mathrm{ft} \mathrm{high}
\end{aligned}
$$

$$
\begin{aligned}
& \cos 64^{\circ}=\frac{\text { adj }}{\text { hyp }} \\
& 55 \cos 64^{\circ}=\frac{x}{55} \cdot 55 \\
& x=55 \cos 64^{\circ} \\
& x \approx 24.1 \mathrm{ft} \text { from the tree }
\end{aligned}
$$

Ex 6: Use a special right triangle to find the sine and cosine of a 45° angle.

$$
\begin{array}{ll}
\sin 45^{\circ}=\frac{o p p}{\text { hyp }} & \cos 45^{\circ}=\frac{\text { opp }}{\text { hyp }} \\
\sin 45^{\circ}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} & \cos 45^{\circ}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
\sin 45^{\circ}=\frac{\sqrt{2}}{2} & \cos 45^{\circ}=\frac{\sqrt{2}}{2}
\end{array}
$$

Section:	$\mathbf{7 - 7}$ Solve Right Triangles
Essential Question	In a right triangle, how can you find all the sides and angles of the triangle?

Warm Up:

Key Vocab:

Solve a Right Triangle	Find the lengths of all sides and the measures of all angles
Inverse Function	"Opposite Functions" Functions that cancel each other out Example: x^{2} and \sqrt{x}

Key Concepts:

Inverse Sine	This inverse function is used to find the measure of an acute angle in a right triangle when the opposite side and hypotenuse of the triangle are either given or can be determined. "The angle whose sine value is..." Notation: $\sin ^{-1}$ How it works: $\begin{aligned} \text { if } \sin A & =\frac{\text { opposite }}{\text { hypotenuse }}=\frac{B C}{A B} \\ \sin ^{-1}(\sin A) & =\sin ^{-1}\left(\frac{B C}{A B}\right) \\ m \angle A & =\sin ^{-1}\left(\frac{B C}{A B}\right) \end{aligned}$
Inverse Cosine	This inverse function is used to find the measure of an acute angle in a right triangle when the adjacent side and hypotenuse of the triangle are either given or can be determined. "The angle whose cosine value is..." Notation: $\cos ^{-1}$ How it works: $\begin{aligned} \text { if } \cos A & =\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A C}{A B} \\ \cos ^{-1}(\cos A) & =\cos ^{-1}\left(\frac{A C}{A B}\right) \\ m \angle A & =\cos ^{-1}\left(\frac{A C}{A B}\right) \end{aligned}$
Inverse Tangent	This inverse function is used to find the measure of an acute angle in a right triangle when the opposite and adjacent sides of the triangle are either given or can be determined. "The angle whose tangent value is..." Notation: $\tan ^{-1}$ How it works: $\begin{aligned} \text { if } \tan A & =\frac{\text { opposite }}{\text { adjacent }}=\frac{B C}{A C} \\ \tan ^{-1}(\tan A) & =\tan ^{-1}\left(\frac{B C}{A C}\right) \\ m \angle A & =\tan ^{-1}\left(\frac{B C}{A C}\right) \end{aligned}$
Caution!	ions $\tan ^{-1}, \sin ^{-1}$, and $\cos ^{-1}$ are different from a negative exponent meaning to take a Example: $x^{-1}=\frac{1}{x}$ Non-example: $\tan ^{-1} \neq \frac{1}{\tan }$

Show:

Ex 1: Solve the triangle formed by the water slide shown in the figure. Round decimal answers to the nearest tenth. Note: there are multiple, correct solution paths.

$$
\begin{aligned}
& \measuredangle Z=108^{\circ}-90^{\circ}-42^{\circ} \\
& \begin{array}{|ll}
\measuredangle Z=48^{\circ} & \sin Z=\frac{\overline{X Y}}{\mathrm{hyp}} \\
\cos Z=\frac{\overline{Z Y}}{\mathrm{hyp}} & 50 \cdot \sin 48^{\circ}=\frac{\overline{X Y}}{50} \cdot 5 Q \\
50 \cdot \cos 48^{\circ}=\frac{\overline{Z Y}}{50} \cdot 5 Q & \overline{X Y}=50 \cdot \sin 48^{\circ} \approx 33.2 \mathrm{ft} \\
\overline{Z Y}=50 \cdot \cos 48^{\circ} \approx 33.5 \mathrm{ft} & \overline{X V}
\end{array}
\end{aligned}
$$

Ex 2: Let $\angle T, \angle K, \angle A$ be an acute angles in right triangles. Use a calculator to approximate the measure of each to the nearest tenth of a degree. Show your work.
a. $\quad \cos T=0.37$
$\cos ^{-1}(\cos T)=\cos ^{-1}(0.37)$
$T=\cos ^{-1}(0.37)$
$T=68.3^{\circ}$
b. $\sin K=0.24$
$\sin ^{-1}(\sin K)=\sin ^{-1}(0.24)$
$K=\sin ^{-1}(0.24)$
$K=13.9^{\circ}$

$$
\begin{aligned}
& \text { c. } \quad \tan A=15.85 \\
& \tan ^{-1}(\tan A)=\tan ^{-1}(15.85) \\
& A=\tan ^{-1}(15.85) \\
& A=86.3^{\circ}
\end{aligned}
$$

Ex 3: Use the calculator to approximate the measure of $\Varangle Q$ to the nearest tenth of a degree.

$$
\begin{gathered}
\tan ^{-1}(\tan Q)=\tan ^{-1} \frac{\text { opposite }}{\text { adjacent }} \\
Q=\tan ^{-1}\left(\frac{12}{8}\right) \\
Q=56.3
\end{gathered}
$$

Ex 4: A road rises 10 feet in a horizontal distance of 200 feet. What is the angle of inclination?

$$
\begin{aligned}
& \tan ^{-1}(\tan A)=\tan ^{-1}\left(\frac{10}{200}\right) \\
& A=\tan ^{-1}\left(\frac{1}{20}\right) \\
& A=2.9^{\circ}
\end{aligned}
$$

Closure:

- When do you use Sine, Cosine, and Tangent?

Sine, cosine, and tangent are used to find a missing side length in a right triangle

- When do you use Inverse Sine, Inverse Cosine, and Inverse Tangent?

Inverse Sine, Inverse Cosine, and Inverse Tangent are used to find a missing angle measure in a right triangle.

Section:	$\mathbf{7 - 8}$ Law of Sines and Law of Cosines
Essential Question	How do you find sides and angles of oblique triangles?

Warm Up:

\square

Key Vocab:

Oblique Triangles	Triangles that have no right angles - they are either acute or obtuse.	
Law of Sines	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ OR $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$	
Law of Cosines	$a^{2}=b^{2}+c^{2}-2 b c \cos A$ OR $b^{2}=a^{2}+c^{2}-2 a c \cos B$ OR $c^{2}=a^{2}+b^{2}-2 a b \cos C$	$\angle A$ and side a are always opposite each other, $\angle B$ and side b are always opposite each other, and $\angle C$ and side c are always opposite each other

Key Concept:

Solving Oblique Triangles	
Given Information	Solution Method
Two angles and any side: AAS or ASA	Law of Sines
* The Ambiguous Case *: Two sides and a non-included angle: *SSA* $>$ may have one solution, two solutions, or no solutions.	Law of Sines
Three sides: SSS	Law of Cosines
Two sides and an included angle: SAS	Law of Cosines

Show:

Ex 1: Use the information in the diagram to find the distance each person lives from the school - round answers to the nearest hundredth. Show your work. How much closer to school does Jimmy live compared to Adolph?

$\frac{3}{\sin 102^{\circ}}=\frac{y}{\sin 61^{\circ}}$
$\frac{3 \sin 61^{\circ}}{\sin 102^{\circ}}=\frac{y \sin 102^{\circ}}{\sin 102^{\circ}} 2.68-.90=1.78 \mathrm{mi}$
$y \approx 2.68 \mathrm{mi}$ $\begin{aligned} & \text { is } 1.78 \text { miles closer to school than Adolph. }\end{aligned}$

Ex 2: In $\triangle D E F, d=9$ in, $e=12$ in and $m \angle F=46^{\circ}$. Find f to the nearest hundredth.

Ex 3: Solve $\triangle A B C$ if $b=22, c=30$ and $m \angle C=30^{\circ}$. Round all answers to the nearest tenth.

$$
\begin{aligned}
\frac{\sin C}{c} & =\frac{\sin B}{b} \\
\sin C & =\frac{c \sin B}{b} \\
\sin C & =\frac{30 \sin 30^{\circ}}{22} \\
C & =\sin ^{-1}\left(\frac{30 \sin 30^{\circ}}{22}\right) \\
C & \approx 43.0^{\circ}
\end{aligned}
$$

Case \#1: $m \angle C \approx 43.0^{\circ}$
$m \angle A=180-30-43.0 \approx 107.0^{\circ}$
$a=\frac{b \sin A}{\sin B}$
$a=\frac{22 \sin 107.0^{\circ}}{.5}$
$a \approx 42.1$

Case \#2: $m \angle C \approx 180-43.0 \approx 137.0^{\circ}$

$$
\begin{aligned}
& m \angle A \approx 180-30-137.0 \approx 13.0^{\circ} \\
& a=\frac{b \sin A}{\sin b} \\
& a=\frac{22 \sin 13.0^{\circ}}{\sin 30^{\circ}} \\
& a \approx 9.9
\end{aligned}
$$

Closure:

- When do you apply the Law of Sines?

Use the Law of Sines when you are given two angles and a side or when you are given two sides and a non-included angle.

- When do you apply the Law of Cosines?

Use the Law of Cosines when you are given three sides or two sides and the included angle.

