Chapter 7 – Right Triangles & Trigonometry

Big IDEAS:

1) Using Pythagorean Theorem and its converse.

2) Using special relationships in right triangles.

3) Using trigonometric ratios to solve right triangles.

Section:	7 – 1 Applying the Pythagorean Theorem
Essential Question	If you know the lengths of two sides of a right triangle, how do you find the length of the third side?

Warm Up:

Key Vocab:

		The most common are: 3, 4, 5
Pythagorean Triple	A set of three positive integers a, b , and c that satisfy the equation	5, 12, 13
Пре	$c^2 = a^2 + b^2$	8, 15, 17 7, 24, 25

Theorems:

Pythagorean Theorem	
In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.	$a \qquad c \qquad $

Ex 1: Find the length of the hypotenuse of a right triangle with legs measuring 5 and 12.

$$c^{2} = a^{2} + b^{2}$$

$$c^{2} = 5^{2} + 12^{2}$$

$$c^{2} = 25 + 144$$
The hypotenuse is 13 units.
$$\sqrt{c^{2}} = \sqrt{169}$$

$$c = 13$$

Ex 2: Randy made a ramp for his dog to get into his truck. The ramp is 6 feet long and the bed of the truck is 3 feet above the ground. Approximately how far from the back of the truck does the ramp touch the ground?

Ex 3: Find the area of an isosceles triangle with side lengths 20 inches, 20 inches and 24 inches.

Ex 4: The given lengths are two sides of a right triangle. All three side lengths of the triangle are integers and together form a Pythagorean triple. Find the length of the third side and tell whether it is a leg or the hypotenuse.

Section:	7 – 2 Use the Converse of the Pythagorean Theorem
Essential Question	How can you use the sides of a triangle to determine if it is right triangle?

Theorems:

Converse of the Pythagorean Theorem		
If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the two shorter sides,	then the triangle is <mark>a right triangle.</mark>	
$c^2 = a^2 + b^2$		
If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the two shorter sides,	then the triangle is <mark>an acute triangle.</mark>	
$c^2 < a^2 + b^2$		
If the square of the length of the longest side of a triangle is greater than to the sum of the squares of the length of the two shorter sides,	then the triangle is <mark>an obtuse triangle.</mark>	
$c^2 > c$	$a^2 + b^2$	

Ex 1: Tell if the given triangle is right, acute, or obtuse – sides are 11, 20, 23.

$$c^{2} = a^{2} + b^{2}$$

$$23^{2} \stackrel{?}{=} 11^{2} + 20^{2}$$

$$529 \stackrel{?}{=} 121 + 400 \qquad c^{2} \stackrel{?}{=} a^{2} + b^{2}$$

$$529 \stackrel{?}{=} 521$$

$$529 \stackrel{?}{=} 521$$

$$529 \stackrel{?}{=} 521$$

$$529 \stackrel{?}{=} 521$$

Ex 2: Tell if the given triangle is right, acute, or obtuse – sides are $10,8,2\sqrt{41}$.

$$c^{2} = a^{2} + b^{2}$$

 $(2\sqrt{41})^{2} \stackrel{?}{=} 8^{2} + 10^{2}$
 r^{2}
 $164 \stackrel{?}{=} 64 + 100$
Since $c^{2} = a^{2} + b^{2}$, the triangle is right.
 $164 \stackrel{?}{=} 164$

Ex 3: The sides of a triangle have lengths x, x - 8, 40. If the length of the longest side is 40, what values of x will make the triangle acute?

$$c^{2} < a^{2} + b^{2}$$

$$40^{2} < x^{2} + (x - 8)^{2}$$

$$1600 < x^{2} + x^{2} - 16x + 64$$

$$0 < 2x^{2} - 16x - 1536$$

$$0 < x^{2} - 8x - 768$$

$$0 < (x + 24)(x - 32)$$

$$x = 32$$

$$32 < x < 40$$

Section:	7 – 3 Use Similar Right Triangles
Essential Question	How can you find the length of the altitude to the hypotenuse of a right triangle?

Key Vocab:

	For two positive numbers $a \& b$, the positive number x that satisfies $\frac{a}{x} = \frac{x}{b}$ So, $x^2 = ab$ and $x = \sqrt{ab}$.
Geometric	Example:
Mean	$\frac{4}{x} = \frac{x}{16}$ $x = \sqrt{4 \cdot 16}$ $x = 8$

Theorems:

If the altitude is drawn to the hypotenuse of a right triangle	Then the two triangles formed are similar to the original triangle and to each other	
urangie,		$\frac{\Delta CBD}{\Delta CBD} \sim \Delta ABC \sim \Delta ACD$

Geometric Mean (Altitude) Theorem		
B D A	$\frac{BD}{CD} = \frac{CD}{AD} \qquad \frac{\text{Hyp. Seg.}}{\text{Alt.}} = \frac{\text{Alt.}}{\text{Hyp. Seg.}}$	
If the altitude is drawn to the hypotenuse of a right triangle,	Then The length of the altitude is the geometric mean of the lengths of the two segments of the hypotenuse.	

Geometric Mean (Leg) Theorem	
	$\frac{AB}{BC} = \frac{BC}{DB} \qquad \frac{\text{Hyp.}}{\text{Leg}} = \frac{\text{Leg}}{\text{Adj. Hyp. Seg.}}$
	$\frac{AB}{AC} = \frac{AC}{AD} \qquad \frac{\text{Hyp.}}{\text{Leg}} = \frac{\text{Leg}}{\text{Adj. Hyp. Seg.}}$
If the altitude is drawn to the hypotenuse of a right triangle,	Then The length of each leg of the right triangle is the geometric mean of the lengths of the hypotenuse AND the segment of the hypotenuse that is adjacent to the leg.

Ex 1: Identify the similar triangles in the diagram.

Ex 2: Find the value of *k*.

10 <u>k</u>
k^2
$k^2 = 20$
$\sqrt{k^2} = \sqrt{20}$
$k = \sqrt{4}\sqrt{5}$
$k = 2\sqrt{5}$

Closure:

- Describe the transformation(s) that move the two smaller triangles onto each other. The smaller triangles can be rotated onto each other
- Describe the transformation(s) that move either of the two smaller triangles onto the whole triangle.

The smaller triangles need to be reflected and then rotated onto the whole triangle.

Section:	7 – 4 Special Right Triangles
Essential Question	How do you find the lengths of the sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle and a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle?

Theorems:

45° – 45° – 90°	The hypotenuse is $\sqrt{2}$ times as long as each leg.	x^{45} $x\sqrt{2}$
Triangle	Easy as … <mark>1<i>x</i>, 1<i>x</i>, <i>x</i>√2 !</mark>	$\frac{45}{x}$
	The hypotenuse is 2 times as long as the short	N N
20° 60° 00°	leg.	30° 2r
Triangle	The longer leg is $\sqrt{3}$ times as long as the shorter leg.	$x\sqrt{3}$
	Easy as … <mark>1<i>x</i>, 2<i>x</i>, <i>x</i>√3 !</mark>	$\boxed{\begin{array}{c} 60^{\circ} \\ 1x \end{array}}$

Ex 1: Find the length of the hypotenuse.

Ex 2: Find the length of the legs in the triangle.

Ex 3: Alex has a team logo patch in the shape of an equilateral triangle. If the sides are 2.5 inches long, what is the approximate height of his patch?

Ex 6: A kite is attached to a 100 foot string as shown. How far above the ground is the kite when the string forms the given angle?

a. $m \angle 1 = 45^{\circ}$

$hyp = x\sqrt{2}$
$\therefore \frac{x\sqrt{2}}{\sqrt{2}} = \frac{100}{\sqrt{2}}$
$x = \frac{100}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
$x = \frac{100\sqrt{2}}{2}$
$x = 50\sqrt{2} \approx 70.71 \text{ ft}$

b. $m \angle 1 = 30^{\circ}$

hyp =	2 <i>x</i>
$\frac{2x}{2}$	100
2	2
x = 50) ft

Section:	7 – 5 Apply the Tangent Ratio
Essential Question	How can you find a leg of a right triangle when you know the other leg and one acute angle?

Key Vocab:

Trigonometric Ratio	The ratio of the lengths of <mark>two sides</mark> in a right triangle. Three common trigonometric ratios are sine, cosine, and tangent.	
Tangent Ratio	Let $\triangle ABC$, be a right triangle with acute angle $\angle A$, then	B hypotenuse opposite of A
	$\tan A = \frac{\text{length of leg opposite } \angle A}{\text{length of leg adjacent } \angle A}$	C leg adjacent to A A

Ex 1: Find the $\tan D$ and the $\tan F$. Write each answer as a fraction and as a decimal rounded to four places.

Ex 2: Find the value of *x*.

Ex 3: Find the height of the flagpole to the nearest foot.

Ex 4: What is the exact value of the tangent ratio of a 30° angle?

Section:	7 – 6 Apply the Sine and Cosine Ratios
Essential Question	How can you find the lengths of the sides of a right triangle when you are given the length of the hypotenuse and one acute angle?

Key Vocab:

Angle of Elevation (Incline)	The angle of sight when looking up at an object	
Angle of Depression (Decline)The angle of sight when looking down at an object		
Angle of Depression (Decline) Angle of Elevation (Incline)		

Key Concepts:

 $\sin A =$

 $\cos A =$

tan A =

hypotenuse

adjacent

hypotenuse

Adiacent

opposite

adjacent

Hippos

Always

Have

Orange

Ankles

Ex 1: Find the $\sin A$ and $\sin B$. Write each answer as a fraction and decimal rounded to four places.

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

sin A

 $\cos A =$

 $\tan A =$

Ex 2: Find the $\cos P$ and $\cos R$. Write each answer as a fraction and decimal rounded to four places.

Ex 3: A rope, staked 20 feet from the base of a building, goes to the roof and forms an angle of elevation of 58° . To the nearest tenth of a foot, how long is the rope?

Ex 4: A pilot is looking at an airport form her plane. The angle of depression is 29°. If the plane is at an altitude of 10,000 ft, approximately how far is the air distance to the runway?

Ex 5: A dog is looking at a squirrel at the top of a tree. The distance between the two animals is 55 feet and the angle of elevation is 64° . How high is the squirrel and how far is the dog from the base if the tree?

Ex 6: Use a special right triangle to find the sine and cosine of a 45° angle.

Section:	7 – 7 Solve Right Triangles
Essential Question	In a right triangle, how can you find all the sides and angles of the triangle?

Key Vocab:

Solve a Right Triangle	Find the lengths of all sides and the measures of all angles
Inverse Function	"Opposite Functions" Functions that cancel each other out Example: x^2 and \sqrt{x}

Key Concepts:

Inverse Sine	This inverse function is used to find the measure of an acute angle in a right triangle when the opposite side and hypotenuse of the triangle are either given or can be determined.		
	"The angle whose sine value is"		
	Notation: sin ⁻¹		
	How it works: if $\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BC}{AB}$		
	$\sin^{-1}\left(\sin A\right) = \sin^{-1}\left(\frac{BC}{AB}\right)$		
	$m \angle A = \sin^{-1} \left(\frac{BC}{AB} \right)$		
Inverse Cosine	This inverse function is used to find the measure of an acute angle in a right triangle when the adjacent side and hypotenuse of the triangle are either given or can be determined.		
	"The angle whose cosine value is"		
	Notation: cos ⁻¹		
	How it works: if $\cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AC}{AB}$		
	$\cos^{-1}\left(\cos A\right) = \cos^{-1}\left(\frac{AC}{AB}\right)$		
	$m \angle A = \cos^{-1} \left(\frac{AC}{AB} \right) \qquad $		
Inverse Tangent	This inverse function is used to find the measure of an acute angle in a right triangle when the opposite and adjacent sides of the triangle are either given or can be determined.		
	"The angle whose tangent value is"		
	Notation: tan ⁻¹		
	How it works: if $\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AC}$		
	$\tan^{-1}\left(\tan A\right) = \tan^{-1}\left(\frac{BC}{AC}\right)$		
	$m \angle A = \tan^{-1} \left(\frac{BC}{AC} \right) \qquad $		
The notations \tan^{-1} , \sin^{-1} , and \cos^{-1} are different from a negative exponent meaning to take a			
Caution! reciprocal. Example: $x^{-1} = \frac{1}{x}$ Non-example: $\tan^{-1} \neq \frac{1}{\tan^{-1}}$			

Student Notes \rightarrow Geometry \rightarrow Chapter 7 – Right Triangles and Trigonometry \rightarrow KEY

Ex 1: Solve the triangle formed by the water slide shown in the figure. Round decimal answers to the nearest tenth. Note: there are multiple, correct solution paths.

Ex 2: Let $\angle T, \angle K, \angle A$ be an acute angles in right triangles. Use a calculator to approximate the measure of each to the nearest tenth of a degree. *Show your work*.

Ex 3: Use the calculator to approximate the measure of $\prec Q$ to the nearest tenth of a degree.

Ex 4: A road rises 10 feet in a horizontal distance of 200 feet. What is the angle of inclination?

Closure:

- When do you use Sine, Cosine, and Tangent? Sine, cosine, and tangent are used to find a missing side length in a right triangle
- When do you use Inverse Sine, Inverse Cosine, and Inverse Tangent? Inverse Sine, Inverse Cosine, and Inverse Tangent are used to find a missing angle measure in a right triangle.

Section:	7 - 8 Law of Sines and Law of Cosines
Essential Question	How do you find sides and angles of oblique triangles?

Key Vocab:

Oblique Triangles	Triangles that have no right angles – they are either acute or obtuse.	
Law of Sines	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ OR $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$	$C = \frac{a}{b} A$
Law of Cosines	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ OR $b^{2} = a^{2} + c^{2} - 2ac \cos B$ OR $c^{2} = a^{2} + b^{2} - 2ab \cos C$	Oblique $\triangle ABC$, where $\angle A$ and side <i>a</i> are always opposite each other, $\angle B$ and side <i>b</i> are always opposite each other, and $\angle C$ and side <i>c</i> are always opposite each other

Key Concept:

Solving Oblique Triangles	
Given Information	Solution Method
Two angles and any side: AAS or ASA	Law of Sines
<u>* The Ambiguous Case * :</u>	Law of Sines
Two sides and a non-included angle: *SSA*	
may have one solution, two solutions, or no solutions.	
Three sides: <mark>SSS</mark>	Law of Cosines
Two sides and an included angle: SAS	Law of Cosines

Show:

Ex 1: Use the information in the diagram to find the distance each person lives from the school – round answers to the nearest hundredth. Show your work. How much closer to school does Jimmy live compared to Adolph?

Ex 2: In $\triangle DEF$, d = 9 in, e = 12 in and $m \angle F = 46^{\circ}$. Find f to the nearest hundredth.

Ex 3: Solve $\triangle ABC$ if b = 22, c = 30 and $m \angle C = 30^\circ$. Round all answers to the nearest tenth.

$$\frac{\sin C}{c} = \frac{\sin B}{b}$$
$$\sin C = \frac{c \sin B}{b}$$
$$\sin C = \frac{30 \sin 30^{\circ}}{22}$$
$$C = \sin^{-1} \left(\frac{30 \sin 30^{\circ}}{22}\right)$$
$$C \approx 43.0^{\circ}$$

Case #1: $m \angle C \approx 43.0^{\circ}$ $m \angle A = 180 - 30 - 43.0 \approx 107.0^{\circ}$ $a = \frac{b \sin A}{\sin B}$ $a = \frac{22 \sin 107.0^{\circ}}{.5}$ $a \approx 42.1$

Closure:

- When do you apply the Law of Sines? Use the Law of Sines when you are given two angles and a side or when you are given two sides and a non-included angle.
- When do you apply the Law of Cosines? Use the Law of Cosines when you are given three sides or two sides and the included angle.