CHAPTER \# 4- CONGRUENT TRIANGLES

In this chapter we address three Big IDEAS:

1) Classify triangles by sides and angles
2) Prove that triangles are congruent
3) Use coordinate geometry to investigate triangle relationships

Section:	$\mathbf{4 - 1}$ Apply Triangle Sum Properties
Essential Question	How can you find the measure of the third angle of a triangle if you know the measures of the other two angles?

Warm Up:

Key Vocab:

Triangle	a polygon with three sides	

Classifications by Side Lengths:

Scalene Triangle	a triangle with NO congruent sides
Isosceles Triangle	a triangle with AT LEAST two congruent sides
Equilateral Triangle	a triangle with three congruent sides

Classifications by Angles Measures:

Acute Triangle	a triangle with three acute angles	
Right Triangle	a triangle with one right angle	
Obtuse Triangle	a triangle with one obtuse angle	
Equiangular		
Triangle	a triangle with three congruent angles	

Additional Vocabulary:

Interior Angle	When the sides of a polygon are extended, the interior angles are the original angles.
Exterior Angle	When the sides of a polygon are extended, the exterior angles are the angles that form linear pairs with the interior angles.
Corollary to a Theorem	A statement that can be proved easily using the theorem to which it is linked.

Theorems:

Triangle Sum Theorem

The sum of the measures of a triangle is 180°
$m \angle A+m \angle B+m \angle C=180^{\circ}$

Corollary to the Triangle Sum Theorem

The acute angles of a right triangle are complementary
$m \angle A+m \angle B=90^{\circ}$

Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles.

```
m\angle1=m\angleA+m\angleB
```


Show:

Ex 1: Classify $\triangle A B C$ by its sides and by its angles.

Sides:

$$
\begin{aligned}
& A B=\sqrt{(2--5)^{2}+(6-4)^{2}}=\sqrt{49+4}=\sqrt{53} \\
& B C=\sqrt{(4-2)^{2}+(-1-6)^{2}}=\sqrt{4+49}=\sqrt{53} \\
& A C=\sqrt{(4--5)^{2}+(-1-4)}=\sqrt{81+25}=\sqrt{106}
\end{aligned}
$$

Angles:

$m_{A B}=\frac{6-4}{2--5}=\frac{2}{7}$
$m_{B C}=\frac{-1-6}{4-2}=\frac{-7}{2}$
$m_{A C}=\frac{-1-4}{4--5}=\frac{-5}{9}$
Because $\overline{A B} \cong \overline{B C}$ AND $\overline{A B} \perp \overline{B C}, \triangle A B C$ is an Isosceles Right Triangle

Ex 2: Find $m \angle D E F$.
By the Exterior Angle Theorem:

$$
\begin{aligned}
3 x+6 & =80+x \\
2 x & =74 \\
x & =37
\end{aligned}
$$

You Try Ex 3: Find the m $\angle B C D$.

$$
\begin{aligned}
& 5 x=x+120 \\
& 4 x=120 \\
& x=30 \\
& \\
& m \angle B=30
\end{aligned}
$$

Ex 4: The support for the skateboard ramp shown forms a right triangle. The measure of one acute angle in the triangles is five times the measure of the other. Find the measure of each acute angle.

By the Corollary to the Triangle Sum Theorem:

$$
\begin{array}{rll}
x+5 x & =90 & \\
6 x=90 & x=15^{\circ} \\
x=15 & 5 x=75^{\circ}
\end{array}
$$

Ex 5: Solve for x and y.

$$
\begin{aligned}
& \text { By Exterior Angle Theorem: } \\
& \begin{array}{l}
x=60+50=110^{\circ} \\
y=110-47=63^{\circ}
\end{array}
\end{aligned}
$$

Section:	4-2 Apply Congruence and Triangles
Essential Question	What are congruent figures?

Warm Up:
\square
Key Vocab:

Congruent Figures	Two or more figures with exactly the same size and shape. All corresponding parts, sides and angle, are congruent.
Corresponding Parts	A pair of sides or angles that have the same relative position in two or more congruent figures

Theorems:

Third Angles Theorem	
If	Then
two angles of one triangle are congruent to	
two angles of another triangle,	the third angles are also congruent.
$\angle A \cong \angle D$ and $\angle B \cong \angle E$,	

Properties:

Congruence of Triangles	
Triangle congruence is reflexive, symmetric, and transitive.	
Reflexive	$\triangle A B C \cong \triangle A B C$
Symmetric	If $\triangle A B C \cong \triangle D E F$, then $\triangle D E F \cong \triangle A B C$
Transitive	If $\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle J K L$, then $\triangle A B C \cong \triangle J K L$

Show:

Ex 1: Write a congruence statement for the triangles shown. Identify all pairs of congruent corresponding parts

$$
\begin{aligned}
& \triangle N M O \cong \triangle Y X Z \\
& \overline{N O} \cong \overline{Y Z} ; \overline{N M} \cong \overline{Y X} ; \overline{M O} \cong \overline{X Z} \\
& \angle M N O \cong \angle X Y Z ; \angle O M N \cong \angle Z X Y ; \\
& \angle M O N \cong \angle X Z Y
\end{aligned}
$$

Ex 2: In the diagram, $A B C D \cong F G H K$

a. Find the value of x.

$$
\begin{aligned}
3 x-6 & =9 \\
3 x & =15 \\
x & =5
\end{aligned}
$$

b. Find the value of y.

$$
\begin{aligned}
4 x-2 y & =44 \\
4(5)-2 y & =44 \\
-2 y & =24 \\
y & =-12
\end{aligned}
$$

Ex 3: Find $m \angle Y X W$.

$$
\begin{aligned}
& 180-35-35=110^{\circ} \\
& 180-110=70^{\circ} \\
& 180-40-70=70^{\circ} \\
& m \angle Y X W=70+35=105^{\circ}
\end{aligned}
$$

Ex 4: Given: $\overline{S V} \cong \overline{R V}, \overline{T V} \cong \overline{W V}$,

$$
\overline{S T} \cong \overline{R W}, \angle T \cong \angle W
$$

Prove: $\triangle S T V \cong \triangle R W V$

Statements	Reasons
1. $\overline{S V} \cong \overline{R V}, \overline{T V} \cong \overline{W V}$,	1. Given
$\overline{S T} \cong \overline{R W}, \angle T \cong \angle W$	2. Vert. $\angle^{\prime} s$ Thm
2. $\angle S V T \cong \angle R V W$	3. Third $\angle^{\prime} s$ Thm
3. $\angle S \cong \angle R$	4. Def. of $\cong \Delta^{\prime} s$
4. $\Delta S T V \cong \triangle R W V$	

Ex 5: Given: Quad $L M N O$ is a square
$\overline{M O}$ bisects $\angle L M N$ and $\angle N O L$ Prove: $\triangle O L M \cong \triangle O N M$

Statements	Reasons
1. Quad $L M N O$ is a square	1. Given
$M O$ bisects $\angle L M N$ and $\angle N O L$	
2. $\overline{O L} \cong \overline{O N} \cong \overline{N M} \cong \overline{M L}$	2. Definition of a Square
3. $\angle L O M \cong \angle M O N$	3. Definition of an angle bisector
$\angle L M O \cong \angle O M N$	4. Reflexive Prop.
4. $\overline{O M} \cong \overline{O M}$	5. Def. of $\cong \Delta^{\prime} s$
5. $\triangle O L M \cong \triangle O N M$	

Closure:

- How do you know two figures are congruent?

ALL corresponding sides and ALL corresponding angles must be congruent.

Section:	$\mathbf{4 - 4}$ Prove Triangles Congruent by SSS
Essential Question	How can you use side lengths to prove triangles congruent?

Warm Up:

Show:

Ex1: Multiple Choice: Which are the coordinates of the vertices of a triangle congruent to $\triangle X Y Z$?
A. $(6,2),(0,-6),(6,-5)$
B. $(5,1),(-1,-6),(5,-6)$
C. $(4,0),(-1,-7),(4,-7)$
D. $(3,-1),(-3,-7),(3,-8)$

Ex2: Given: Diagram
Prove $\triangle A B D \cong \triangle C D B$

Statements	Reasons
1. $\overline{A B} \cong \overline{C D} ; \overline{A D} \cong \overline{B C}$	1. Given
2. $\overline{A C} \cong \overline{A C}$	2. Reflexive Prop.
3. $\triangle A B D \cong \triangle C D B$	3. SSS \cong Post.

Ex3: Given: D is the midpoint of $\overline{A C}$

$$
\overline{A B} \cong \overline{B C}
$$

Prove: $\triangle A B D \cong \triangle C B D$

Statements	Reasons
1. D is the midpoint of $\overline{A C} ; \overline{A B} \cong \overline{B C}$	a. Given
2. $\overline{B D} \cong \overline{B D}$	2. Reflexive Property
3. $\overline{A D} \cong \overline{D C}$	3. Definition of a midpoint
4. $\triangle A B D \cong \triangle C B D$	4. SSS \cong Postulate

Closure:

- Can you use side lengths to prove quadrilaterals congruent?

No, SSS can only be applied to triangles. Four sides can be arranged in different orders to create different quadrilaterals, whereas three sides will create a unique triangle.

Section:	$\mathbf{4 - 5}$ Prove Triangles Congruent by SAS and HL
Essential Question	How can you use two sides and an angle to prove triangles congruent?

Warm Up:

Key Vocab:

Legs (of a Right Triangle)	In a right triangle, the sides adjacent to the right angle.
Hypotenuse	In a right triangle, the side opposite the right angle Always the longest side of a right triangle

Side-Angle-Side (SAS) Congruence Postulate	
If	then
two sides and the included angle of one	
triangle are congruent to two sides and the	the two triangles are congruent.
included angle of a second triangle,	
$\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\overline{A C} \cong \overline{D F}$	

| Hypotenuse-Leg (HL) Theorem | |
| :--- | :--- | :--- |
| If
 the hypotenuse and a leg of a right triangle are
 congruent to the hypotenuse and a leg of a
 second right triangle, | then |
| the two triangles are congruent. | |
| $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\triangle A B C$ and $\triangle D E F$ | |
| are right triangles | |

Show:

Ex 1: If you know that $\overline{A B} \cong \overline{C B}$ and $\angle A B D \cong \angle C B D$, what postulate or theorem can you use to conclude that $\triangle A B D \cong \triangle C B D$?

The SAS Post.

Ex 2: In the diagram R is the center of the circle. If $\angle S R T \cong \angle U R T$, what can you conclude about $\triangle S R T$ and $\Delta U R T$?

They are congruent by SAS Post.

Ex 3: State the third congruence that would allow you to prove $\triangle R S T \cong \triangle X Y Z$ by the SAS Congruence Postulate.
a. $\overline{S T} \cong \overline{Y Z}, \overline{R S} \cong \overline{X Y}$

$$
\angle S \cong \angle Y
$$

b. $\angle T \cong \angle Z, \overline{R T} \cong \overline{X Z}$

$$
\overline{S T} \cong \overline{Y Z}
$$

Ex 4: Given: $\overline{Y W} \perp \overline{X Z} ; \overline{X Y} \cong \overline{Z Y}$
Prove: $\triangle X Y W \cong \triangle Z Y W$

Statements	Reasons
1. $\overline{Y W} \perp \overline{X Z} ; \overline{X Y} \cong \overline{Z Y}$	1. Given
2. $\angle X W Y$ and $\angle Z W Y$ are rt. $\angle^{\prime} s$	2. \perp lines form 4 rt. $\angle ' s$
3. $\Delta X Y W \cong \Delta Z Y W$ are rt. $\Delta^{\prime} s$	3. Def. of rt. Δ
4. $\overline{Y W} \cong \overline{Y W}$	4. Reflexive Prop.
5. $\Delta X Y W \cong \triangle Z Y W$	5. HL Thm.

Ex 5: Given: $\overline{M P} \cong \overline{N P} ; \overline{O P}$ bisects $\angle M P N$
Prove: $\quad \triangle M O P \cong \triangle N O P$

Statements	Reasons
1. $\overline{M P} \cong \overline{N P} ; \overline{O P}$ bisects $\angle M P N$	1. Given
2. $\angle M P O \cong \angle N P O$	2. Def. of \angle bis.
3. $\overline{O P} \cong \overline{O P}$	3. Reflexive Prop
4. $\triangle M O P \cong \triangle N O P$	4. SAS Post.

Section:	$\mathbf{4 - 6}$ Prove Triangles Congruent by ASA and AAS
Essential Question	If one side of a triangle is congruent to one side of another, what do you need to know about the angles to prove the triangles are congruent?

Warm Up:

Postulates:

Angle-Side-Angle (ASA) Congruence Postulate	
If	then
two angles and the included side of one	
triangle are congruent to two angles and the	
included side of a second triangle,	the two triangles are congruent.
$\angle A \cong \angle D, \overline{A B} \cong \overline{D E}$, and $\angle B \cong \angle E$	

Theorems:

Angle-Angle-Side (AAS) Congruence Theorem	
If	Then
two angles and a non-included side of one	
triangle are congruent to two angles and a	
non-included side of a second triangle,	the two triangles are congruent.
$\angle B \cong \angle E, \angle A \cong \angle D$, and $\overline{A C} \cong \overline{D F}$	

Ex 1: Can the triangles be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.

ASA Post
b.

AAS Theorem
c.

Cannot be proven congruent

Ex 2: Write a two-column proof.
Given: $\overline{A B} \perp \overline{B C} ; \overline{D E} \perp \overline{E F}$

$$
\overline{A C} \cong \overline{D F} ; \angle C \cong \angle F
$$

Prove: $\triangle A B C \cong \triangle D E F$

Statements	Reasons
1. $\overline{A B} \perp \overline{B C} ; \overline{D E} \perp \overline{E F}$	1. Given
2. $\angle B$ is a rt. $\angle ; \angle E$ is a rt. \angle	2. Def. of \perp lines
3. $\angle B \cong \angle E$	3. Rt. $\angle \cong$ Thm.
4. $\overline{A C} \cong \overline{D F} ; \angle C \cong \angle F$	4. Given
5. $\triangle A B C \cong \triangle D E F$	5. AAS \cong Post.

Ex 3: Write a proof:
Given: $\angle C B F \cong \angle C D F$

$$
\overline{B F} \cong \overline{F D}
$$

Prove: $\triangle A B F \cong \triangle E D F$

Statements	Reasons
1. $\angle C B F \cong \angle C D F$ $\overline{B F} \cong \overline{F D}$	1. Given
2. $\angle C B F$ and $\angle A B F$ are supplementary $\angle C D F$ and $\angle E D F$ are supplementary	2. Linear Pair Postulate
3. $\angle A B F \cong \angle E D F$	3. Congruent Supplements Theorem
4. $\angle B F A \cong \angle D F E$	4. Vertical Angles Theorem
5. $\triangle A B F \cong \angle E D F$	5. ASA Postulate

Closure:

- What are the FIVE ways to prove that two triangles are congruent?

1. SSS Congruence Postulate
2. SAS Congruence Postulate
3. ASA Congruence Postulate
4. AAS Congruence Theorem
5. HL Congruence Theorem

Section:	$\mathbf{4 - 7}$ Use Congruent Triangles
Essential Question	How can you use congruent triangles to prove angles or sides congruent?

Warm Up:

Key Vocab:

CPCTC	Corresponding Parts of Congruent Triangles are Congruent

Show:
Ex 1: If P is the midpoint of $\overline{M S}$, how wide is the bull's pasture?

40 feet

Ex 2: Write a two-column proof.
Given: $\overline{G K}$ bisects $\angle F G H$ and $\angle F K H$
Prove: $\overline{F K} \cong \overline{H K}$

Statements	Reasons
1. $\overline{G K}$ bisects $\angle F G H$ and $\angle F K H$	1. Given
2. $\angle F G K \cong \angle H G K ; \angle F K G \cong \angle H K G$	2. Def. of \angle bis.
3. $\overline{G K} \cong \overline{G K}$	3. Reflexive Prop.
4. $\Delta F G K \cong \Delta H G K$	4. ASA Post.
5. $\overline{F K} \cong \overline{H K}$	5. CPCTC

Ex 3: Write a flow proof:
Given: $\angle 1 \cong \angle 2 ; \angle 3 \cong \angle 4$
Prove: $\triangle M N R \cong \triangle Q P R$

Statements	Reasons
1. $\angle 1 \cong \angle 2 ; \angle 3 \cong \angle 4$	1. Given
2. $\overline{M Q} \cong \overline{M Q}$	2. Reflexive Property
3. $\angle 5 \cong \angle 6$	3. Congruent Supplements Theorem
4. $\triangle \mathrm{MNQ} \cong \triangle \mathrm{QPN}$	4. AAS
5. $\angle \mathrm{NRM} \cong \angle \mathrm{PRQ}$	5. Vertical Angles Congruence Theorme
6. $\overline{M N} \cong \overline{P Q}$	6. CPCTC
7. $\triangle M N R \cong \triangle Q P R$	7. AAS

Section:	$\mathbf{4 - 8}$ Use Isosceles and Equilateral Triangles
Essential Question	How are the sides and angles of a triangle related if there are two or more congruent sides or angles?

Warm Up:

\square

Key Vocab:

Components of an Isosceles Triangle	
Legs	The congruent sides
Vertex Angle	The angle formed by the legs
Base	The third side (the side that is NOT a leg)
Base Angle	The two angles that are adjacent to the base

Theorems:

Base Angles Theorem (Isosceles Triangle Theorem)	
If two sides of a triangle are congruent,	then
the angles opposite them are congruent.	

| Base Angles Theorem Converse (Isosceles Triangle Theorem Converse) | |
| :--- | :--- | :--- |
| If | |
| two angles of a triangle are congruent, | then |
| $\angle B \cong \angle C$ | the sides opposite them are congruent. |
| | |

Corollaries:

If	then
a triangle is equilateral,	it is equiangular.

If	
it is equiangular.	then
a triangle is equilateral,	

Show:

Ex 1: In $\triangle P Q R, \overline{P Q} \cong \overline{P R}$. Name two congruent angles.

Ex 2: Find the measure of $\angle X$ and $\angle Z$.

$$
65^{\circ}, 65^{\circ}
$$

Ex 3: Find the values of x and y in the diagram.

$$
x=7, y=3
$$

Ex 4: Diagonal braces $\overline{A C}$ and $\overline{B D}$ are used to reinforce a signboard that advertises fresh eggs and produce at a roadside stand. Each brace is 14 feet long.
a. What congruent postulate can you use to prove that $\triangle A B C \cong \triangle D C B$?

SSS Post.
b. Explain why $\triangle B E C$ is isosceles.
$\angle D B C \cong \angle A C B$, since CPCTC. $\overline{B E} \cong \overline{C E}$ by the Conv. of the Base \angle ' s Thm. And this implies that $\triangle B E C$ is isosceles.
c. What triangles would you use to show that $\triangle A E D$ is isosceles?
$\triangle A B D$ and $\triangle D C A$

