Chapter 10 – Properties of Circles

In this chapter we address

Big IDEAS:

1) Using properties of segments that intersect circles

2) Applying angle relationships in circles

3) Using circles in the coordinate plane

Section:	10 – 1 Use Properties of Tangents
Essential Question	How can you verify that a segment is tangent to a circle?

Warm Up:

e set of all points in a plane that are nidistant from a given point called the nter of the circle.	• P
e point from which all points of the circle equidistant	Point <i>P</i> is the <i>center</i> of $\odot P$
segment whose endpoints are the center the circle and a point on the circle. e distance from the center of a circle to y point on the circle.	\overline{PA} is a radius
	ter of the circle. e point from which all points of the circle equidistant egment whose endpoints are the center he circle and a point on the circle. e distance from the center of a circle to

Chord	A segment whose endpoints are on the circle.	$W = P$ Z $WX \text{ and } \overline{YZ} \text{ are chords.}$
Diameter	A <i>chord</i> that passes through the center of the circle. The distance across a circle through its center.	$\overline{AB} \text{ is a diameter}$
Secant	A line that intersects a circle in two points.	Line <i>m</i> is a secant.
Tangent	A line in the plane of a circle that intersects the circle in exactly one point, the <i>point of</i> <i>tangency</i> .	$\overline{QS} \text{ is tangent to } \overline{QR}.$

Theorems:

If	Then
Tangent segments are drawn from a common external point,	They are congruent.
\overline{RS} and \overline{TS} are tangents,	$\overline{RS} \cong \overline{TS}$
• S	R S S

Show:

Ex 1: Tell whether the line or segment is best described as a radius chord, diameter, secant, or tangent of $\bigcirc C$.

Ex 2: Tell how many common tangents the circles have and draw them.

Ex 3: In the diagram, \overline{AB} is a radius of $\bigcirc A$. Is \overline{BC} tangent to $\bigcirc A$? Explain.

Ex 4: In the diagram, S is a point of tangency. Find the radius $r \circ f \odot T$.

Ex 5: In $\bigcirc C, \overline{DA}$ is tangent at A and \overline{DB} is tangent at B. Find x.

Section:	10 – 2 Find Arc Measures
Essential Question	How do you find the measure of an arc of a circle?

Central Angle	An angle whose vertex is the center of the circle.	$\overset{B}{\checkmark}$
Arc	A portion of the circumference of the circle.	A
Minor Arc	Part of a circle that measures <mark>less</mark> than 180°	P C
Major Arc	Part of a circle that measures greater than 180°	$\frac{AB}{ACB}$ is a minor arc $\frac{ACB}{ACB}$ is a major arc

Semicircle	An arc with endpoints that are the endpoints of a diameter of a circle. The measure of a semicircle is 180°	DEF is a semicircle.
Measure of an Arc	The measure of the arc's central angle	B A $T_{70^{\circ}}$ P C $mAB = 70^{\circ}$ $mACB = 360^{\circ} - 70^{\circ} = 290^{\circ}$
Congruent Circles	Circles that have congruent radii	$P \bullet_2 \qquad Q \bullet^2$ $\bigcirc P \cong \bigcirc Q$
Congruent Arcs	Two arcs that have the same measure and are arcs of the same circle or of congruent circles.	$CD \cong EF$

Postulates:

Arc Addition Postulate		
The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.		
The sum of the parts equals the whole		
If	then	В
B is between A and C ,	mABC = mAB + mBC	
		A
If	then	•) •
mABC = mAB + mBC,	B is between A and C.	

Show:

Ex 1: Find the measure of each arc of $\bigcirc C$, where \overline{AB} is a diameter

Ex 2: A result of a survey about the ages of people in a town is shown. Find the indicated arc measures.

Ex 3: Tell whether arcs *CD* and *EF* are congruent. Explain why or why not.

Section:	10 – 3 Apply Properties of Chords
Essential Question	How can you tell if two chords in a circle are congruent?

If	Then
one chord is a perpendicular bisector of another chord,	the first chord is <mark>a diameter</mark> .
\overline{QR} is perp. bis. of \overline{ST} ,	\overline{QR} is a diameter
Q U T R	Q U R T

If	Then
a diameter of a circle is perpendicular to a chord,	the diameter bisects the chord AND its arc.
\overline{QR} is a diameter and $\overline{QR} \perp \overline{ST}$,	$\overline{SU} \cong \overline{TU}$ and $SR \cong RT$.
Q U R T	Q U T R

Show:

Ex 1: In $\bigcirc R, \overline{AB} \cong \overline{CD}$ and $mAB = 108^\circ$. Find mCD.

Ex 2: Three props are place on a stage at points *P*, *Q*, and *R* as shown. Describe how to find the location of a table so it is the same distance from each prop.

Ex 3: Use the diagram of $\bigcirc C$ to find the length of \overline{BF} . Tell what theorem your used.

BF = 10If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

Ex 4: In the diagram of $\bigcirc P$, PV = PW, QR = 2x + 6, and ST = 3x - 1. Find QR.

2x + 6 = 3x - 1	QR = 2(7) + 6
7 = x	QR = 20

Section:	10 – 4 Use Inscribed Angles and Polygons
Essential Question	How do you find the measure of an inscribed angle?

Inscribed Angle	An angle whose vertex is on a circle and whose sides contain chords of the circle. The measure of an inscribed angle is one half the measure of its intercepted arc.	B C C
Intercepted Arc	The arc that lies in <mark>the interior of an inscribed angle and has endpoints on the angle.</mark>	∠ABC is an <i>inscribed angle</i> . AC is its <i>intercepted arc</i> . $m∠ABC = \frac{1}{2}mAC$
Inscribed Polygon	A polygon whose vertices all lie on a circle.	
Circumscribed Circle	The circle that contains the vertices of an inscribed polygon.	The quadrilateral and the triangle are <i>inscribed</i> in the circles. The circles are <i>circumscribed</i> about the quadrilateral and the triangle.

If	Then
two inscribed angles of a circle intercept the same arc,	the angles are congruent.
Inscribed angles $\angle ABC$ and $\angle ADC$ both intercept AC ,	$\angle ABC \cong \angle ADC$
B D C	B D C

Show: **Ex 1:** Find the indicated measure in $\bigcirc C$.

Ex 2: Find *mKN* and *m∠KMN*. What do you notice about ∠*KMN* and ∠*KLN*?

Ex 3: Name two pair of congruent angles in the figure.

Ex 4: A graphic design software program was used in a home improvement store to design kitchen cabinets. The designer showed a wall of cabinets with a 90° viewing angle at *P*. From what other positions would the cabinets fill a 90° viewing window?

Ex 5: Find the value of each variable.

a.)

Section:	10 – 5 Apply Other Angle Relationships in Circles
Essential Question	How do you find the measure of an angle formed by two chords that intersect inside a circle?

If	Then
a tangent and a chord intersect at a point on a circle,	the measure of each angle formed is one half the measure of its intercepted arc.
	$m \angle 1 = \frac{1}{2}mACB$ and $m \angle 2 = \frac{1}{2}mAB$
C	2 1 B

Angles Outside the Circle Theorem			
If Then			
a tangent and a secant, two tangents, or two secants intersect outside a circle,			e of the angle formed is one half erence of the measures of the
			intercepted arcs
a tangent and a secant	<mark>two tan</mark> g	jents	two secants
Q R S	V	Т 2 U	W 3 X Y
$m \angle 1 = \frac{1}{2} \left(mQS - mRS \right)$	$m \angle 2 = \frac{1}{2} \left(mT \right)$	VU - mTU	$m \angle 3 = \frac{1}{2} \left(mZY - mWX \right)$

Show: Ex 1: Line *m* is tangent to the circle. Find the indicated variable.

a.)

Ex 2: Find the value of *x*.

Ex 3: Find the value of *x*.

Ex 4: The Space Shuttle typically orbits at a height of 600 kilometers. Suppose an astronaut takes a picture from point *S*. What is the measure of RQ? (Round your answer to the nearest tenth)

$$m \angle RSP = \sin^{-1} \left(\frac{6370}{6970} \right) = 66.1^{\circ}$$

$$m \angle RSQ = 2m \angle RSP = 2(66.1^{\circ}) = 132.2^{\circ}$$

$$m \angle RSQ = \frac{1}{2} ((360 - x) - x)$$

$$132.2^{\circ} = \frac{1}{2} ((360 - x) - x)$$

$$132.2^{\circ} = \frac{1}{2} (360 - 2x)$$

$$132.2^{\circ} = 180 - x$$

$$x = 47.8^{\circ}$$

Section:	10 – 6 Find Segment Lengths in Circles
Essential Question	What are some properties of chords, secants, and tangents to a circle?

Segments of a Chord	When two chords intersect in the interior of a circle, each chord is divided into two segments called <i>segments of the chord</i> .	$\frac{V}{V}$ $\frac{V}{V}$ $\frac{V}{V}$ $\frac{V}{V}$ $\frac{WU}{V}$ $$
Secant Segment	A segment that contains a chord of a circle and has exactly one endpoint outside the circle.	C P
External Segment	The part of a secant segment that is <mark>outside the circle</mark>	$\overline{CE} \text{ is a secant segment.}$ $\overline{DE} \text{ is the external segment.}$

Segments of Chords Theorem		
If two chords intersect in the interior of a circle,	Then then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.	
	$EA \bullet EC = BE \bullet ED$	
A	E C	

Segment of Secants Theorem	
If two secant segments share the same endpoint outside a circle,	Then the product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment.
	$EA \bullet EB = EC \bullet ED$
E A C	B D

Segments of Secants and Tangents Theorem	
If	Then
a secant segment and a tangent segments share an endpoint outside a circle,	the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment.
	$CD^2 = DB \cdot AD$
A B C D	

Show: **Ex 1:** Find *RT* and *SU*.

Ex 2: What is the value of x?

Ex 3: Use the figure to find *AB*.

Ex 4: Suppose that Space Shuttle is positioned at point *S*, 150 miles above the Earth. What is the length of line segment \overline{ES} from the Earth to the shuttle? (The radius of the Earth is about 4000 miles.) Round your answer to the nearest mile.

e.

 $ES^{2} = 150(150 + 8000)$ $ES^{2} = 122500$ $ES \approx 1106$ miles

Section:	10 – 7 Write and Graph Equations of Circles
Essential Question	What do you need to know to write the standard equation of a circle?

Standard Equation of a Circle	The standard equation of a circle with center (h,k) and radius <i>r</i> is $\frac{(x-h)^2 + (y-k)^2 = r^2}{r^2}$		
Area of a Circle	$A = \pi r^2$		
Sector of a Circle	A region of a circle that is bounded by two radii and an arc of the circle.	A B C D	
Area of a Sector	$A = \frac{mAB}{360} \pi r^2$		

Show: Ex 1: Write the equation of the circle shown.

(x+2) + (y-3) = 14.44	$(x+2)^2 + (y-3)^2 = 1$	14.44
-----------------------	-------------------------	-------

Ex 3: The point (8, -1) is on a circle with center (4, 2). Write the standard equation of the circle.

 $(x-4)^2 + (y-2)^2 = 25$

Ex 4: The equation of a circle is $(x+1)^2 + (y-3)^2 = 4$. Graph the circle.

Ex 5: In $\bigcirc O$ with radius 9, $m \angle AOB = 120$. Find the area of the circle and the areas of each of the sectors.

 $A_{circle} = \pi \cdot 9^{2} \qquad A_{sector1} = \frac{120}{360} \pi \cdot 9^{2} \qquad A_{sector2} = \frac{240}{360} \pi \cdot 9^{2}$ $A_{circle} = 81\pi \approx 254.5 \qquad A_{sector1} = 27\pi \approx 84.8 \qquad A_{sector2} = 54\pi \approx 169.6$

Ex 6: Find the area of the region bounded by \overline{AB} and AB.

