CHAPTER 10 - Properties of Circles

In this chapter we address
Big IDEAS:

1) Using properties of segments that intersect circles
2) Applying angle relationships in circles
3) Using circles in the coordinate plane

Section:	$\mathbf{1 0} \mathbf{- 1}$ Use Properties of Tangents
Essential Question	How can you verify that a segment is tangent to a circle?

Warm Up:

Key Vocab:

Circle	The set of all points in a plane that are equidistant from a given point called the center of the circle.
Center	The point from which all points of the circle are equidistant
Radius	A segment whose endpoints are the center of the circle and a point on the circle. The distance from the center of a circle to any point on the circle. Plural: radii

Chord	A segment whose endpoints are on the circle.	A chord that passes through the center of the circle. The distance across a circle through its center. Diameter A line that intersects a circle in two points.
Tangent	A line in the plane of a circle that intersects the circle in exactly one point, the point of tangency.	

Theorems:

| In a plane,
 a line is tangent to a circle IFF the line is perpendicular to a radius of the circle at its endpoint
 on the circle |
| :--- | :--- |
| |
| If |

If Tangent segments are drawn from a common external point,	Then They are congruent. $\overline{R S}$ and $\overline{T S}$ are tangents,

Show:

Ex 1: Tell whether the line or segment is best described as a radius chord, diameter, secant, or tangent of $\odot C$.
a.) $\overline{D C}$ radius
b.) $\overline{B D}$ chord
c.) $\overline{D E}$ diameter
d.) $\overleftrightarrow{A E}$ tangent

Ex 2: Tell how many common tangents the circles have and draw them.
a.)

2 external tangents
b.)

4 common tangents -2 external, 2 internal
c.)

3 common tangents - 2 external, 1 internal

Ex 3: In the diagram, $\overline{A B}$ is a radius of $\odot A$. Is $\overline{B C}$ tangent to $\odot A$? Explain.

No, $25^{2}+60^{2}=4225$, and $67^{2}=4489$
$\therefore 25^{2}+60^{2} \neq 67^{2}$

Ex 4: In the diagram, S is a point of tangency. Find the radius r of $\odot T$.

$$
\begin{aligned}
(r+36)^{2} & =r^{2}+48^{2} \\
r^{2}+72 r+1296 & =r^{2}+2304 \\
72 r & =1018 \\
r & =14 \mathrm{~cm}
\end{aligned}
$$

Ex 5: In $\odot C, \overline{D A}$ is tangent at A and $\overline{D B}$ is tangent at B. Find x.

$$
\begin{aligned}
25 & =6 x-8 \\
33 & =6 x \\
5.5 & =x
\end{aligned}
$$

Section:	$\mathbf{1 0}-\mathbf{2}$ Find Arc Measures
Essential Question	How do you find the measure of an arc of a circle?

Warm Up:

Key Vocab:

Central Angle	An angle whose vertex is the center of the circle.	
Arc	A portion of the circumference of the circle.	
Minor Arc	Part of a circle that measures less than 180°	
Major Arc	Part of a circle that measures greater than 180°	$A B$ is a central angle of $\odot P$

Semicircle	An arc with endpoints that are the endpoints of a diameter of a circle. The measure of a semicircle is 180°		
Measure of an Arc	The measure of the arc's central angle		
Congruent			
Circles			
Congruent			
Arcs		\quad	Two arcs that have the same
:---			
measure and are arcs of the same			
circle or of congruent circles.			

Postulates:

Arc Addition Postulate		
The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.		
The sum of the parts equals the whole		
If	then	B
B is between A and C,	$m A B C=m A B+m B C$	
If $m A B C=m A B+m B C$	then B is between A and C.	

Show:

Ex 1: Find the measure of each arc of $\odot C$, where $\overline{A B}$ is a diameter
a.) $m D B=135^{\circ}$
b.) $m D A B=225^{\circ}$
c.) $m A D B=180^{\circ}$

Ex 2: A result of a survey about the ages of people in a town is shown. Find the indicated arc measures.
a.) $m R U=140^{\circ}$
b.) $m R S T=130^{\circ}$
c.) $m R V T=230^{\circ}$
d.) $m U S T=270^{\circ}$

Ex 3: Tell whether arcs $C D$ and $E F$ are congruent. Explain why or why not.
a.)

$C D \cong E F$; they are in the same circle and
$m C D \cong m E F$.
b.)

$C D$ and $E F$ have the same measure, but they are not congruent because they are arcs of circles that are not congruent.
c.)

$C D \cong E F$ because they are in the same circle and vertical angles $\angle C R D$ and $\angle E R F$ are congruent.

\section*{| Section: | $\mathbf{1 0} \mathbf{- 3}$ Apply Properties of Chords |
| :--- | :--- |}

Essential
Question
How can you tell if two chords in a circle are congruent?

Warm Up:

Theorems:

In the same circle or in congruent circles, two minor arcs are congruent IFF their corresponding chords are congruent.	

| If
 one chord is a perpendicular bisector of
 another chord, | Then
 the first chord is a diameter. |
| :--- | :--- | :--- |
| $\overline{Q R}$ is perp. bis. of $\overline{S T}$, | $\overline{Q R}$ is a diameter |
| t | |

If a diameter of a circle is perpendicular to a chord,	Then
the diameter bisects the chord AND its arc.	
$\overline{Q R}$ is a diameter and $\overline{Q R} \perp \overline{S T}$,	

| In the same circle or in congruent circles, |
| :--- | :--- |
| two chords are congruent IFF they are equidistant from the center. |

Show:
Ex 1: In $\odot R, \overline{A B} \cong \overline{C D}$ and $m A B=108^{\circ}$. Find $m C D$.

Ex 2: Three props are place on a stage at points P, Q, and R as shown. Describe how to find the location of a table so it is the same distance from each prop.

Ex 3: Use the diagram of $\odot C$ to find the length of $\overline{B F}$. Tell what theorem your used.

$B F=10$
If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

Ex 4: In the diagram of $\odot P, P V=P W, Q R=2 x+6$, and $S T=3 x-1$. Find $Q R$.

$$
\begin{aligned}
2 x+6 & =3 x-1 & & Q R=2(7)+6 \\
7 & =x & & Q R=20
\end{aligned}
$$

Section:	$\mathbf{1 0 - 4}$ Use Inscribed Angles and Polygons
Essential Question	How do you find the measure of an inscribed angle?

Warm Up:

\square

Key Vocab:

Inscribed Angle	An angle whose vertex is on a circle and whose sides contain chords of the circle. The measure of an inscribed angle is one half the measure of its intercepted arc.		
Intercepted Arc	The arc that lies in the interior of an inscribed angle and has endpoints on the angle.		
Inscribed			
Polygon		\quad	A polygon whose vertices all lie
:---			
on a circle.			

Theorems:

| If |
| :--- | :--- |
| two inscribed angles of a circle intercept the |
| same arc, |\quad| Then |
| :--- |
| the angles are congruent. |
| Inscribed angles $\angle A B C$ and $\angle A D C$ both
 intercept $A C$, |

A right triangle can be inscribed in a circle IFF the hypotenuse is a diameter of the circle.		
If	Then	
in $\triangle A B C, m \angle B=90^{\circ}$,	$\overline{A C}$ is a diameter of the circle	
If	$\overline{A C}$ is a diameter of the circle	in $\triangle A B C, m \angle B=90^{\circ}$.

A quadrilateral can be inscribed in a circle IFF its opposite angles are supplementary.

If	D, E, F, and G lie on the circle,	
If $\quad m \angle D+m \angle F=180=m \angle G+m \angle E$	Then $\quad D \angle D+m \angle F=180=m \angle G+m \angle E$	

Show:
Ex 1: Find the indicated measure in $\odot C$.

a.) $m \angle D=\frac{1}{2} \cdot 100=50^{\circ}$
b.) $m A B=110^{\circ}$
$m \angle A C B=m A B=180-35-35=110^{\circ}$

Ex 2: Find $m K N$ and $m \angle K M N$. What do you notice about $\angle K M N$ and $\angle K L N$?

$$
\begin{aligned}
& m K N=2(52)=104^{\circ} \\
& m \angle K M N=52^{\circ} \\
& \angle K M N \cong \angle K L N
\end{aligned}
$$

Ex 3: Name two pair of congruent angles in the figure.

A.) $\angle R \cong \angle S$
B.) $\angle R \cong \angle T$
$\angle U \cong \angle T$
$\angle U \cong \angle S$
C.) $\angle R \cong \angle U$
D.) $\angle R \cong \angle T$
$\angle S \cong \angle T$
$\angle R \cong \angle S$

Ex 4: A graphic design software program was used in a home improvement store to design kitchen cabinets. The designer showed a wall of cabinets with a 90° viewing angle at P. From what other positions would the cabinets fill a 90° viewing window?

From any position on a semicircle that has $\overline{A B}$ as a diameter.

Ex 5: Find the value of each variable.
a.)

b.)

$$
\begin{array}{rlrl}
5 x+7 x & =180 & 17 y+19 y & =180 \\
12 x & =180 & 36 y & =180 \\
x & =15 & y & =5
\end{array}
$$

Section:	$\mathbf{1 0} \mathbf{- 5}$ Apply Other Angle Relationships in Circles
Essential Question	How do you find the measure of an angle formed by two chords that intersect inside a circle?

Warm Up:

Theorems:

If a tangent and a chord intersect at a point on a circle,	Then the measure of each angle formed is one half the measure of its intercepted arc.
	$m \angle 1=\frac{1}{2} m A C B$ and $m \angle 2=\frac{1}{2} m A B$

Angles Inside the Circle Theorem		
If	Then	
two chords intersect inside a circle,		then the measure of each angle is one half the sum of the measures of the arcs intercepted by the angle and its vertical angle..
	$m \angle 1=\frac{1}{2}(m A B+m C D)$ and	

Angles Outside the Circle Theorem		
$\begin{array}{l}\text { If } \\ \text { a tangent and a secant, two tangents, or two } \\ \text { secants intersect outside a circle,, }\end{array}$	$\begin{array}{c}\text { Then } \\ \text { the measure of the angle formed is one half } \\ \text { the difference of the measures of the } \\ \text { intercepted arcs }\end{array}$	
two secants		

Show:

Ex 1: Line m is tangent to the circle. Find the indicated variable.
a.)

b.)

$$
236^{\circ}=y
$$

Ex 2: Find the value of x.

$$
x=\frac{1}{2}(63+89)=76^{\circ}
$$

Ex 3: Find the value of x.

Ex 4: The Space Shuttle typically orbits at a height of 600 kilometers. Suppose an astronaut takes a picture from point S. What is the measure of $R Q$? (Round your answer to the nearest tenth)

Section:	$\mathbf{1 0}-\mathbf{6}$ Find Segment Lengths in Circles
Essential Question	What are some properties of chords, secants, and tangents to a circle?

Warm Up:

Key Vocab:

| Segments of a |
| :--- | :--- | :--- |
| Chord |\quad| When two chords intersect in the |
| :--- |
| interior of a circle, each chord is |
| divided into two segments called |
| segments of the chord. |$\quad \overline{W U}$ and $\overline{U Z}$ are segments of chord

Theorems:

| Segments of Chords Theorem | |
| :--- | :--- | :--- |
| If | Then
 two chords intersect in the interior of a circle,
 then the product of the lengths of the segments
 of one chord is equal to the product of the
 lengths of the segments of the other chord. |
| | $E A \cdot E C=B E \cdot E D$ |

| Segment of Secants Theorem | |
| :--- | :--- | :--- |
| If
 two secant segments share the same endpoint
 outside a circle, | Then
 the product of the lengths of one secant
 segment and its external segment equals the
 product of the lengths of the other secant
 segment and its external segment. |
| | $E A \cdot E B=E C \cdot E D$ |

Segments of Secants and Tangents Theorem		
If	Then	
a secant segment and a tangent segments share		
an endpoint outside a circle,		the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment.

Show:
Ex 1: Find $R T$ and $S U$.

Ex 2: What is the value of x ?

$$
\begin{aligned}
3(3+x) & =4(4+2) \\
9+3 x & =24 \\
3 x & =15 \\
x & =5
\end{aligned}
$$

A.) 2
B.) $2 \frac{2}{3}$
C.) 5
D.) 8

Ex 3: Use the figure to find $A B$.

$$
\begin{aligned}
24^{2} & =16(x+16) \\
576 & =16 x+256 \\
320 & =16 x \\
20 & =x
\end{aligned}
$$

Ex 4: Suppose that Space Shuttle is positioned at point S, 150 miles above the Earth. What is the length of line segment $\overline{E S}$ from the Earth to the shuttle? (The radius of the Earth is about 4000 miles.) Round your answer to the nearest mile.

Section:	$\mathbf{1 0 - 7}$ Write and Graph Equations of Circles
Essential Question	What do you need to know to write the standard equation of a circle?

Warm Up:

Key Vocab:

Standard Equation of a Circle	The standard equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$
Area of a Circle	$A=\pi r^{2}$
Sector of a Circle	A region of a circle that is bounded by two radii and an arc of the circle.
Area of a Sector	$A=\frac{m A B}{360} \pi r^{2}$

Show:
Ex 1: Write the equation of the circle shown.

$$
x^{2}+y^{2}=16
$$

Ex 2: Write the standard equation of a circle with center $(-2,3)$ and radius 3.8.

$$
(x+2)^{2}+(y-3)^{2}=14.44
$$

Ex 3: The point $(8,-1)$ is on a circle with center $(4,2)$. Write the standard equation of the circle.

$$
(x-4)^{2}+(y-2)^{2}=25
$$

Ex 4: The equation of a circle is $(x+1)^{2}+(y-3)^{2}=4$. Graph the circle.

Ex 5: In $\odot O$ with radius $9, m \angle A O B=120$. Find the area of the circle and the areas of each of the sectors.

$$
\begin{array}{lll}
A_{\text {circle }}=\pi \cdot 9^{2} & A_{\text {sector } 1}=\frac{120}{360} \pi \cdot 9^{2} & A_{\text {sector } 2}=\frac{240}{360} \pi \cdot 9^{2} \\
A_{\text {circle }}=81 \pi \approx 254.5 & A_{\text {sector } 1}=27 \pi \approx 84.8 & A_{\text {sector } 2}=54 \pi \approx 169.6
\end{array}
$$

Ex 6: Find the area of the region bounded by $\overline{A B}$ and $A B$.

$$
A_{\text {sector }}=\frac{120}{360} \pi \cdot 6^{2}=12 \pi
$$

$$
A_{\triangle A B O}=\frac{1}{2} \cdot 3 \cdot 6 \sqrt{3}=9 \sqrt{3}
$$

$$
A_{\text {total }}=12 \pi-9 \sqrt{3} \approx 22.1
$$

