Section:	$\mathbf{7 - 2}$ Use the Converse of the Pythagorean Theorem
Essential Question	How can you use the sides of a triangle to determine if it is a right triangle?

Warm Up:

\square

Theorems:

Review:

Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

If two sides of a triangle are x and y , then the third side must be between $\underline{x-y}$ and $\underline{x+y}$ where $\mathrm{x} \geq \mathrm{y}$.

Show:

Ex 1: Tell if the given triangle is right, acute, or obtuse.
a.

$$
(3 \sqrt{13})^{2} ? 6^{2}+9^{2}
$$

$$
117=117
$$

$c^{2}=a^{2}+b^{2}$
Right Triangle
b.

$29^{2} ? 16^{2}+24^{2}$
$841>832$
$c^{2}>a^{2}+b^{2}$
Obtuse Triangle
c.

$(2 \sqrt{10})^{2} ? 6^{2}$
$40=4$
$c^{2}<a^{2}+b^{2}$
Acute Triangle

Ex 2: Can segments with lengths of 2.8 feet, 3.2 feet, and 4.2 feet form a triangle? If so, would the triangle be acute, right, or obtuse?
$4.2>2.8+3.2$, so by the Triangle Inequality Theorem, a triangle CAN be formed with these lengths
$4.2^{2} ? 2.8^{2}+3.2^{2}$
$17.64<18.08$
$c^{2}<a^{2}+b^{2}$
Acute Triangle
Ex 3: Can segments with lengths of 6.1 inches, 9.4 inches, and 11.3 inches form a triangle? If so, would the triangle be acute, right, or obtuse?
$11.3>6.1+9.4$, so by the Triangle Inequality Theorem, a triangle CAN be formed with these lengths

$$
11.3^{2} ? 6.1^{2}+9.4^{2}
$$

$127.69>125.57$
$c^{2}>a^{2}+b^{2}$
Obtuse Triangle

Section:	$\mathbf{7 - 5}$ Apply the Tangent Ratio
Essential Question	How can you find a leg of a right triangle when you know the other leg and one acute angle?

Warm Up:
\square

Key Vocab:

Trigonometric Ratio	The ratio of the lengths of two sides in a right triangle. Three common trigonometric ratios are sine, cosine, and tangent.	
Tangent Ratio	Let $\triangle A B C$, be a \qquad with acute angle $\angle A$, then	

Angle of Elevation (Incline)	The angle of sight when looking up at an object		
Angle of Depression (Decline)	The angle of sight when looking down at an object		
Angle of Depression (Decline)			

Show:

Ex 1: Find the $\tan D$ and the $\tan F$. Write each answer as a fraction and as a decimal rounded to four places.

$$
\begin{aligned}
& \tan D=\frac{\text { opposite }}{\text { adjacent }}=\frac{60}{45}=\frac{4}{3} \approx 1.3333 \\
& \tan F=\frac{\text { opposite }}{\text { adjacent }}=\frac{45}{60}=\frac{3}{4} \approx 0.7500
\end{aligned}
$$

Ex 2: Find the value of x.
9

$$
\begin{aligned}
& \tan 17^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \tan 17^{\circ}=\frac{9}{x} . \\
& x \tan 17^{\circ}=9 \\
& x=\frac{9}{\tan 17^{\circ}} \\
& x \approx 29.438
\end{aligned}
$$

Ex 3: Find the height of the flagpole to the nearest foot.

$$
\begin{aligned}
& \tan 65^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \tan 65^{\circ}=\frac{x}{24} \\
& x=24 \tan 65^{\circ} \\
& x=51 \mathrm{ft}
\end{aligned}
$$

Ex 4: What is area of the triangle?

$$
\begin{aligned}
\tan \left(60^{\circ}\right) & =\frac{x}{3} \\
3 \tan \left(60^{\circ}\right) & =x \\
5.2 & \approx x
\end{aligned}
$$

$$
\begin{aligned}
& A=1 / 2 b h \\
& A=1 / 2(3)(5.2) \approx 7.8
\end{aligned}
$$

Section:	$7-6 \quad$ Apply the Sine and Cosine Ratios
Essential Question	How can you find the lengths of the sides of a right triangle when you are given the length of the hypotenuse and one acute angle?

Warm Up:

\square

Key Concepts:

	Let $\triangle A B C$, be a right triangle with acute angle $\angle A$, then
Sine Ratio	$\sin A=\frac{\text { length of leg opposite } \angle \mathrm{A}}{\text { hypotenuse }}=\frac{\text { opposite }}{\text { hypotenuse }}$
Cosine Ratio	$\cos A=\frac{\text { length of leg adjacent } \angle A}{\text { hypotenuse }}=\frac{\text { adjacent }}{\text { hypotenuse }}$
op A	

Show:

Ex 1: Find the $\sin A$ and $\sin B$. Write each answer as a fraction and decimal rounded to four places.

$$
\begin{aligned}
& 40^{2}+75^{2}=c^{2} \\
& 85=c \\
& \sin A=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{40}{85}=\frac{8}{17} \approx .4706 \\
& \sin B=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{75}{85}=\frac{15}{17} \approx .8824
\end{aligned}
$$

Ex 2: Find the $\cos P$ and $\cos R$. Write each answer as a fraction and decimal rounded to four places.

$$
\begin{aligned}
& 10^{2}+(5 \sqrt{5})^{2}=c^{2} \\
& 15=c \\
& \cos P=\frac{\text { adj }}{\text { hyp }}=\frac{5 \sqrt{5}}{15}=\frac{\sqrt{5}}{3} \approx .7454 \\
& \cos R=\frac{\text { adj }}{\text { hyp }}=\frac{10}{15}=\frac{2}{3} \approx .6667
\end{aligned}
$$

Ex 3: A rope, staked 20 feet from the base of a building, goes to the roof and forms an angle of elevation of 58°. To the nearest tenth of a foot, how long is the rope?

$$
\begin{aligned}
& \cos 58^{\circ}=\frac{\mathrm{adj}}{\mathrm{hyp}} \\
& x \cos 58^{\circ}=\frac{20}{x} \cdot x \\
& \frac{x \cos 58^{\circ}}{\cos 58^{\circ}}=\frac{20}{\cos 58^{\circ}} \\
& x=\frac{20}{\cos 58^{\circ}} \approx 37.7 \mathrm{ft}
\end{aligned}
$$

Ex 4: A pilot is looking at an airport form her plane. The angle of depression is 29°. If the plane is at an altitude of $10,000 \mathrm{ft}$, approximately how far is the air distance to the runway?

$$
\begin{aligned}
& \sin 29^{\circ}=\frac{o p p}{\text { hyp }} \\
& x \sin 29^{\circ}=\frac{10000}{x} \cdot x \\
& \frac{x \sin 29^{\circ}}{\sin 29^{\circ}}=\frac{10000}{\sin 29^{\circ}} \\
& x=\frac{10000}{\sin 29^{\circ}} \approx 20626.7 \mathrm{ft}
\end{aligned}
$$

Ex 5: A dog is looking at a squirrel at the top of a tree. The distance between the two animals is 55 feet and the angle of elevation is 64°. How high is the squirrel and how far is the dog from the base if the tree?

$$
\begin{aligned}
& \sin 64^{\circ}=\frac{\text { opp }}{\text { hyp }} \\
& 55 \sin 64^{\circ}=\frac{x}{55} \cdot .55^{\circ} \\
& x=55 \sin 64^{\circ} \\
& x \approx 49.4 \mathrm{ft} \mathrm{high}
\end{aligned}
$$

$$
\begin{aligned}
& \cos 64^{\circ}=\frac{\text { adj }}{\text { hyp }} \\
& 55 \cos 64^{\circ}=\frac{x}{55} \cdot 55 \\
& x=55 \cos 64^{\circ} \\
& x \approx 24.1 \mathrm{ft} \text { from the tree }
\end{aligned}
$$

Ex 6: What is the area of the triangle? (Round answers to the nearest tenth.)

$$
\begin{array}{rlr}
\cos \left(45^{\circ}\right)=\frac{h}{10} & \sin \left(45^{\circ}\right) & =\frac{b}{10} \\
10 \cos \left(45^{\circ}\right) & =h & 10 \sin \left(45^{\circ}\right) \\
7.1 & \approx h \\
7.1 & \approx h \\
A=1 / 2 b h & \\
A=1 / 2(7.1)(7.1) \approx 25.2
\end{array}
$$

