Section:	7 – 2 Use the Converse of the Pythagorean Theorem		
Essential Question	How can you use the sides of a triangle to determine if it is a right triangle?		

Warm Up:

Theorems:

Review:

Show:

Ex 1: Tell if the given triangle is right, acute, or obtuse.

Ex 2: Can segments with lengths of 2.8 feet, 3.2 feet, and 4.2 feet form a triangle? If so, would the triangle be *acute, right,* or *obtuse*?

4.2 > 2.8 + 3.2, so by the Triangle Inequality Theorem, a triangle CAN be formed with these lengths

 4.2^{2} ? $2.8^{2} + 3.2^{2}$ 17.64 < 18.08 $c^{2} < a^{2} + b^{2}$ Acute Triangle

Ex 3: Can segments with lengths of 6.1 inches, 9.4 inches, and 11.3 inches form a triangle? If so, would the triangle be *acute, right,* or *obtuse*?

11.3 > 6.1 + 9.4, so by the Triangle Inequality Theorem, a triangle CAN be formed with these lengths

 11.3^2 ? $6.1^2 + 9.4^2$ 127.69 > 125.57 $c^2 > a^2 + b^2$ Obtuse Triangle

Student Notes \rightarrow Geometry \rightarrow Chapter 7 – Right Triangles and Trigonometry

Section:	7 – 5 Apply the Tangent Ratio
Essential Question	How can you find a leg of a right triangle when you know the other leg and one acute angle?

Warm Up:

Key Vocab:

Trigonometric	The ratio of the lengths of <mark>two sides</mark> in a right triangle.			
Ratio	Three common trigonometric ratios are sine, cosine, and tangent.			
Tangent Ratio	Let $\triangle ABC$, be a with acute angle $\angle A$, then	B leg opposite of A C leg adjacent to A		

Angle of Elevation (Incline)	The angle of sight when looking up at an object				
Angle of Depression (Decline)	The angle of sight when looking down at an object				
Angle of Depression (Decline) Angle of Elevation (Incline)					

Show:

Ex 1: Find the $\tan D$ and the $\tan F$. Write each answer as a fraction and as a decimal rounded to four places.

Ex 2: Find the value of *x*.

Ex 3: Find the height of the flagpole to the nearest foot.

Ex 4: What is area of the triangle?

Section:	7 – 6 Apply the Sine and Cosine Ratios
Essential Question	How can you find the lengths of the sides of a right triangle when you are given the length of the hypotenuse and one acute angle?

Warm Up:

Key Concepts:

Page

Adjacent

Student Notes \rightarrow Geometry \rightarrow Chapter 7 – Right Triangles and Trigonometry

Show:

Ex 1: Find the $\sin A$ and $\sin B$. Write each answer as a fraction and decimal rounded to four places.

Ex 2: Find the $\cos P$ and $\cos R$. Write each answer as a fraction and decimal rounded to four places.

Ex 3: A rope, staked 20 feet from the base of a building, goes to the roof and forms an angle of elevation of 58° . To the nearest tenth of a foot, how long is the rope?

Ex 4: A pilot is looking at an airport form her plane. The angle of depression is 29°. If the plane is at an altitude of 10,000 ft, approximately how far is the air distance to the runway?

Ex 5: A dog is looking at a squirrel at the top of a tree. The distance between the two animals is 55 feet and the angle of elevation is 64° . How high is the squirrel and how far is the dog from the base if the tree?

Ex 6: What is the area of the triangle? (Round answers to the nearest tenth.)

45° 10	$\cos(45^\circ) = \frac{h}{10}$		$\sin(45^\circ) = \frac{b}{10}$
	$10\cos(45^\circ) = h$		$10\sin(45^\circ) = b$
_	$7.1 \approx h$		$7.1 \approx h$
	$A = \frac{1}{2}bh$ $A = \frac{1}{2}(7.1)(7.1) \approx 25.2$		
			2