Name: \qquad Key Date: \qquad
A SCALE DRAWING is a diagram/map/model of an object that is too large or too small to draw. The dimensions are proportional to the actual dimensions (distances) of the real-life example. *Maps, blue prints, floor models are some examples.

The SCALE on a scale drawing is the ratio of the drawing lengths or model to its corresponding actual lengths.
" 1 in : 12 ft " means that 1 inch in the model represents an actual distance of 12 ft .

"Scale" dimensions in the scale drawing.

To find the actual distance from a scale drawing, use the scale to write a proportion and solve.

Example 1: On a map of Florida, the distance between Coral Springs and Fort Lauderdale is about 4.1 centimeters.

The scale on the map is $\mathbf{1}$ centimeter $=\mathbf{4 . 5} \mathbf{~ k m}$ What is the actual distance?

$$
\begin{aligned}
\frac{1 \mathrm{~cm}}{4.5 \mathrm{~km}} & =\frac{4.1 \mathrm{~cm}}{x} \\
x & =18.45 \mathrm{~km}
\end{aligned}
$$

Example 2: On a map of North Carolina, the distance between Raleigh and Charlotte is $3 \frac{1}{4}$ inches. The scale on the map is $\mathbf{1}$ inch = $\mathbf{4 0}$ miles. What is the actual distance?

$$
\begin{aligned}
\frac{1 \mathrm{in}}{40 \mathrm{mi}} & =\frac{3.25 \mathrm{in}}{x \mathrm{mi}} \\
x & =130 \mathrm{mi}
\end{aligned}
$$

Example 3: On the blueprint of the pool, each square has a side length of 0.25 in . What is the actual width of the pool?

$$
\begin{aligned}
\frac{0.25 \mathrm{in}}{2 \mathrm{ft}} & =\frac{1.5 \mathrm{in}}{x \mathrm{ft}} 6 \mathrm{sq} \text { 's at } 0.25 \mathrm{in}=1.5 \mathrm{in} \\
0.25 x & =3 \\
x & =12 \mathrm{ft}
\end{aligned}
$$

Example 4: A designer has made a scale drawing of a living room for one of her clients.
The scale of the drawing is 1 inch $=1 \frac{1}{3}$ feet. On the drawing, the sofa is 6 inches long. Find the actual length of the sofa.

$$
11 / 3=4 / 3
$$

$$
\begin{aligned}
& \frac{1 i n}{4 / 3 \mathrm{ft}}=\frac{6 i n}{x \mathrm{ft}} \\
& x=24 / 3=8 \mathrm{ft}
\end{aligned}
$$

Example 5: Inside the Lincoln Memorial, the chamber that features the marble statue of Abraham Lincoln has a height of 60 feet. Suppose a scale model of the chamber has a height of 4 in .
What is the scale of the model?

$$
\begin{aligned}
& \frac{60 \mathrm{ft}}{4 \mathrm{in}} \rightarrow \frac{15 \mathrm{ft}}{1 \mathrm{in}} \\
& \text { Scale }=1 \mathrm{in}: 15 \mathrm{ft}
\end{aligned}
$$

a) Suppose a scale model has a scale of 2 inches $=3$ feet. What is the scale factor?

$$
\underset{\substack{12 i n \\ \text { fee }}}{\frac{2 \text { in }}{3 \mathrm{ft}} \rightarrow \underset{\substack{\text { fin }}}{\frac{2 i n}{36 i n}} \rightarrow \frac{1}{18}=S F}
$$

b) Suppose the scale is $\mathbf{2}$ inches $=\mathbf{4}$ yards. What is the scale factor?

$$
\begin{aligned}
& \frac{2 i n}{4 y d s} \rightarrow \frac{2 i n}{12 \mathrm{ft}} \rightarrow \frac{2 \text { in }}{144 \mathrm{in}} \rightarrow \frac{1}{72}=\mathrm{SF} \\
& 3 f+\text { peryd sizing }
\end{aligned}
$$

Jacob has made a scale drawing of his yard. The scale of the drawing is $\mathbf{1}$ centimeter $=\mathbf{0 . 5}$ meter.

1. The length of the patio is 4.5 centimeters in the drawing. Find the actual length.

$$
\begin{aligned}
\frac{1 \mathrm{~cm}}{0.5 \mathrm{~m}} & =\frac{4.5 \mathrm{~cm}}{x \mathrm{~m}} \\
x & =2.25 \mathrm{~m}
\end{aligned}
$$

3. Find the scale factor for the drawing.
4. The actual distance between the water faucet and the pear tree is 11.2 meters. Find the corresponding distance on the drawing.

$$
\begin{aligned}
& \frac{1 \mathrm{~cm}}{0.5 \mathrm{~m}}=\frac{x \mathrm{~cm}}{11.2 \mathrm{~m}} \\
& 11.2=0.5 x \\
& 22.4 \mathrm{~cm}=x
\end{aligned}
$$

For questions \# 1-3, use the following information.

The local school district has made a scale model of the campus of Engels Middle School including a proposed new building. The scale of the model is $\mathbf{1}$ inch = $\mathbf{3}$ feet.

1. An existing gymnasium is 8 inches tall in the model. How tall is the actual gymnasium?

$$
\begin{aligned}
& \frac{\operatorname{lin}}{3 \mathrm{ft}}=\frac{8 i n}{x \mathrm{ft}} \\
& x=24 \mathrm{ft}
\end{aligned}
$$

3. What is the scale factor of the model?

$$
\frac{\operatorname{lin}}{3 \mathrm{ft}} \rightarrow \frac{\mathrm{lin}}{36 \mathrm{in}} \rightarrow \frac{1}{36}=\mathrm{SF}
$$

4. On a map, two cities are $5 \frac{3}{4}$ inches apart. The scale of the map is $\frac{1}{2}$ inch $=3$ miles. What is the actual distance between the towns?

$$
\begin{aligned}
& \frac{5.75 \mathrm{in}}{x \mathrm{mi}}=\frac{0.5 \mathrm{in}}{3 \mathrm{mi}} \\
& 17.25=0.5 \times \\
& 34.5=x \mathrm{mi}
\end{aligned}
$$

6. Marta is making a scale drawing of her apartment for a school project. The apartment is 28 feet wide. On her drawing, the apartment is 7 inches wide. What is the scale of Marta's drawing?

What is the scale factor of the model? $1: 48$
2. The new building is 22.5 inches from the gymnasium in the model. What will be the actual distance from the gymnasium to the new building if it is built?

$$
\begin{aligned}
& \frac{\operatorname{lin}}{3 \mathrm{ft}}=\frac{22.5 \mathrm{in}}{x \mathrm{ft}} \\
& x=67.5 \mathrm{ft}
\end{aligned}
$$

View of Campus from Above

5. The bed of Jerry's pickup truck is 6 feet long. On a scale model of the truck, the bed is 8 inches long. What is the scale of the model?
$\frac{6 \mathrm{ft}}{8 i n} \rightarrow \frac{3 \mathrm{ft}}{8 i n}$

8in equals 3 ft
7. The smallest spider, the Patu marples of Samoa, is 0.43 millimeter long. A scale model of this spider is 8 centimeters long. What is the scale of the model?

$$
\frac{0.43 \mathrm{~mm}}{8 \mathrm{~cm}} \rightarrow \frac{43 \mathrm{~cm}}{8 \mathrm{~cm}}
$$

Which of the following represents a proportional relationship?
A. $\frac{2}{3}=\frac{8}{12}^{\div 4}$
B. $\frac{3}{4}=\frac{4}{5}$
C. $\frac{3}{5}=\frac{6}{7}$
D. $\frac{5}{6}=\frac{4}{5}$
*Review 8) Estimate $-\sqrt{118}$ to the nearest whole number.

Find the length/distance for each example given. Be sure to include units!

Actual lengths

A garage door that is 16 feet wide.

A surgical instrument is $\mathbf{1 5 0}$ millimeters long.

A lake is 85 feet across (diameter).

Model lengths

Los Angeles to San Diego, California
Map Distance: 6.35 cm
Chicago Illinois to Mexico City, Mexico
Map Distance: 10.9 cm

Scale	Model length
2 inches: 1 foot	32 in
$1 \mathrm{~mm}: \frac{1}{2} \mathrm{~cm}$	75 mm
$1 \mathrm{in}: 4$ feet	21.25 in

Actual length

$1 \mathrm{~cm}: 20 \mathrm{mi}$
127 mi

2725 km

Multiple Choice You decide to use a scale of 1 in . : 8 ft to make a scale drawing of your classroom. If the actual length of your classroom is 36 feet, what should the length of the classroom in the drawing be?
$\frac{\operatorname{lin}}{8 f t}=\frac{x i n}{36 f t}$
45 in $=x$
A. 1 in .
B. 4.5 in .
C. 36 in .
D. 288 in .

Multiple Choice A child's picnic table is a scale model of an adult picnic table. The child's picnic table is 22 inches tall, and the adult picnic table is 33 inches tall. What is the model's scale?
F. 1:22
G. $1: 15$
H. $1: 1.5$
I. $1: 1$

The liquid outer core of Earth is 2300 kilometers thick. A scale model of the layers of Earth has a scale of 1 in . 500 km . How thick is the liquid outer core of the model?
(A) 0.2 in .
B 4.6 in .
C) 0.2 km
D 4.6 km

$\frac{2300 \mathrm{~km}}{x}=\frac{500 \mathrm{kn}}{1 \mathrm{in}}$
 $$
46=x
$$

