Name: _____

6.1 Functions

Essential Question:

• What is a function?

Relation	A set of ordered pairs such that <mark>each member of the domain corresponds to <u>at</u> <u>least</u> one member of the range</mark>		
Function	A set of ordered pairs such that <mark>each member of the domain corresponds to</mark> <u>exactly</u> one member of the range		
Domain	The set of x's (inputs, abscissas, independents) that when plugged into the function give REAL NUMBER results		
Range	The set of y's (outputs, ordinates, dependents)		
Ordered Pairs	(x, y) (input, output) (Independent, Dependent)		

Examples:

Indicate whether the set defines a function. If it does, state the domain and range of the function.

1. {(6, 8), (7, 9), (8, 10), (9, 11)} **2.** {(1, 3), (1, 4), (1, 5), (1, 6)} **3.** {(1, 6)

A function Domain = {6, 7, 8, 9} Range = {8, 9, 10, 11} Not a function

3. {(1, 6), (2, 6), (3, 6), (4, 6)}
A function
Domain = {1, 2, 3, 4}
Range = {6}

Determine whether each of the following relations is a function. If it is a function, identify the domain and range.

The Vertical Line Test	If a vertical line intersects a graph in <u>more than one point</u> , the graph is <u>not</u> that of a function
------------------------	---

7.

Examples:

6.

Indicate whether the graph is the graph of a function.

Function – the vertical line only touches the graph in one point

Not a function – the vertical line touches the graph in <u>two</u> places.

Algebraic Function Test	Solve the equation for <i>y</i> , then determine if for each <i>x</i> -value there is only one corresponding y value.
	\rightarrow odd exponents on the y-value are functions \rightarrow even exponents on the y-value are NOT functions

Indicate whether the equation defines a function with independent variable *x*.

8.
$$4x^2 + y = -9$$

 $y = -9 - 4x^2$
function
10. $-3x + y^3 = 8$
 $y = \sqrt[3]{3x + 8}$
Function
 $f(x)$ replaces the y variable
9. $6x - y^2 = 7$
 $y^2 = 6x - 7$
 $y = \pm \sqrt{6x - 7}$
Not a function – there are TWO y-values for the same x-value
11. $-2x + y^2 = 3$
 $y^2 = 2x + 3$
 $y = \pm \sqrt{2x + 3}$
Not a function

Examples:

Evaluate each of the following functions.

12. Find the value of
$$f(2)$$
 if $f(x) = -x + 8$.
 13. Find $f(a-2)$ if $f(x) = -x - 5$.

 $f(2) = -2 + 8$
 $f(a-2) = -(a-2) - 5$
 $f(2) = 6$
 $f(a-2) = -a+2-5$
 $f(a-2) = -a-3$

Finding the Domain of a Function		
Fractions	Rational means fractional \rightarrow denominator of a fraction $\neq 0$	
Radicals	Expressions under square roots must be positive or zero →You cannot substitute any value for a variable in the radical that would cause the radicand to be negative. →Negatives in a square root result in imaginary numbers.	
• Any other functions will <i>not</i> have restrictions on the domain unless otherwise noted.		

Find the domain of the following functions. Write answers in interval notation.

Difference Quotient
$$\frac{f(x+h) - f(x)}{h}$$

Evaluate the difference quotient for each of the following.

18. f(x) = 2x + 10

$$\frac{2(x+h)+10-(2x+10)}{h} = \frac{2x+2h+10-2x-10}{h}$$
$$= \frac{2h}{h}$$
$$= 2$$

19.
$$f(x) = x^2 - 9$$

$$\frac{(x+h)^2 - 9 - (x^2 - 9)}{h} = \frac{x^2 + 2xh + h^2 - 9 - x^2 + 9}{h}$$
$$= \frac{2xh + h^2}{h}$$
$$= \frac{h(2x+h)}{h}$$
$$= 2x + h$$

20.
$$f(x) = x^2 + 7$$

$$\frac{(x+h)^2 + 7 - (x^2 + 7)}{h} = \frac{x^2 + 2xh + h^2 + 7 - x^2 - 7}{h}$$
$$= \frac{2xh + h^2}{h}$$
$$= \frac{h(2x+h)}{h}$$
$$= 2x+h$$

6.2 Graphing Functions

Essential Question(s):

• How do you graph piecewise-defined functions?

x – intercept	<mark>zero, root, solution</mark> Where graph crosses <mark>the x – axis</mark> Where the <i>y</i> -value <mark>is zero : (x, 0)</mark>
y – intercept	Where graph crosses <mark>the y – axis</mark> Where the <i>x</i> -value <mark>is zero : (0, y)</mark>
Continuous Function	A function that has no breaks, gaps, or holes. Example: • • • • • • • • • • • • •
Discontinuity	Break, gap, or hole in the graph Any place where the function is not continuous.

Characteristics of a function		
On an open interval, for any <i>a</i> and <i>b</i> in the interval:		
1. If $a < b$ while $f(a) < f(b)$ for all values, then the function is increasing Translation: as x increases, y increases		
2. If $a < b$ while $f(a) > f(b)$ for all values, then the function is decreasing Translation: as x increases, y decreases		
3. If for all a and b in that interval $f(a) = f(b)$, then the function is constant Translation: as x increases, y-value does NOT change		

Use the following graph to answer questions 1-8.

Use the following graph to answer questions 1-8:				
1. Find the domain of <i>f</i> .		2. Find the range of	f <i>f</i> .	
$(-\infty,-2)\cup(-2,\infty)$		<mark>(-</mark>	$\infty, -3) \cup (1, \infty)$	Ŕ
3. Find the <i>x</i> -intercept(s).		4. Find the <i>y</i> -interco	ept(s).	
<mark>x intercept: none</mark>		y	intercept: -3	
5. Find the intervals over which <i>f</i> is in	ncreasing.	6. Find the interva	Is over which f is	decreasing.
none		<mark>(-</mark>	$\infty, -2) \cup (1, \infty)$	
7. Find the intervals over which f is c	onstant.	8. Find any points o	of discontinuity.	
(-2,1) 9. $f(x) = \frac{3x+12}{2}$			x = -2	
2x-8	b Find the y	intercent	c Find the win	torcont
a. Find the domain of <i>f</i> : $2x - 8 \neq 0$ $2x \neq 8$ $x \neq 4$	b. Find the x- 0: -3 x -	$= \frac{3x + 12}{2x - 8}$ = 3x + 12 3x = 12 = -4	f(0) =	$\frac{3(0) + 12}{2(0) - 8}$ $\frac{12}{-8} = -1.5$
10. $f(x) = \frac{x^2 - 1}{x^2 + 100}$				
a. Find the domain of <i>f</i> .	b. Find the <i>x</i> -	-intercept.	c. Find the <i>y</i> -in	tercept.
$x^{2} + 100 = 0$ {all real numbers}	0 = 0 = 1 = ±1	$= \frac{x^2 - 1}{x^2 + 100}$ $= x^2 - 1$ x^2 $= x$	f(0) = f(0) = f(0) = f(0)	$\frac{\frac{0^2 - 1}{0^2 + 100}}{\frac{-1}{100}} =01$

- **11. a.** Use the graphing calculator sketch the graph of $y = x^3 4x^2 + x + 1$.
 - **b.** Identify all *x* and *y*-intercepts.

Use 2nd \rightarrow Trace \rightarrow 2: Zero to find the *x*-intercepts.

Use 2nd \rightarrow Trace \rightarrow 1: Value to find the *y*-intercepts.

c. Identify all maximum and minimum values.

Use 2nd \rightarrow Trace \rightarrow 3: Minimum \rightarrow Identify: Left Bound, Right Bound, and Guess values

Use 2nd \rightarrow Trace \rightarrow 4: Maximum \rightarrow Identify: Left Bound, Right Bound, and Guess values

d. Identify the intervals over which the graph is increasing and decreasing.

Increasing: $(-\infty, 0.1) \cup (2.5, \infty)$

Decreasing: (0.1, 2.5)

Piecewise function	A function that is defined by <mark>two (or more) equations over a specified</mark> domain
--------------------	---

Examples:

Make a sketch of the following functions

12.
$$f(x) = \begin{cases} x-2, x \neq 2 \\ 3, x = 2 \end{cases}$$
13.
$$f(x) = \begin{cases} x^2, -1 \le x \\ x, x > 1 \end{cases}$$

13.
$$f(x) = \begin{cases} x^2, -1 \le x \le 1 \\ x, x > 1 \end{cases}$$

c. Find the domain, range, and all points of discontinuity.

15. Find a piecewise definition for the graph of f(x).

16. Find a piecewise definition for the graph of f(x).

6.3 Transformations of Functions

Essential Question(s):

- How do you graph vertical and horizontal shifts, reflections, and size transformations of functions?
- What are even and odd functions?

Sketch graphs for each of the following **parent functions**. Find their domains and ranges, and determine if they are even, odd, or neither.

Transformations on Functions		
Let f be a function and c be a positive real number		
Vertical Shifts	• $y = f(x) + c$ is the graph of $y = f(x)$ shifted c units upward	
	• $y = f(x) - c$ is the graph of $y = f(x)$ shifted c units downward	
Horizontal Shifts	• $y = f(x+c)$ is the graph of $y = f(x)$ shifted <i>c</i> units to the left	
	• $y = f(x-c)$ is the graph of $y = f(x)$ shifted <i>c</i> units to the right	
Reflections	• $y = -f(x)$ is the graph of $y = f(x)$ reflected about the <u>x-axis</u>	
	• $y = f(-x)$ is the graph of $y = f(x)$ reflected about the y-axis	
Vertical Stretching and Shrinking	• If $c > 1$, $y = cf(x)$ is the graph of $y = f(x)$ stretched vertically	
	• If $0 < c < 1$, $y = cf(x)$ is the graph of $y = f(x)$ shrunk vertically	
	→In both cases, <u>multiply</u> each <u>y-coordinate</u> by c	
Horizontal Stretching and Shrinking	• If $c > 1$, $y = f(cx)$ is the graph of $y = f(x)$ shrunk horizontally	
	• If $0 < c < 1$, $y = f(cx)$ is the graph of $y = f(x)$ stretched horizontally	
	→In both cases, <u>divide</u> each <u>x-coordinate</u> by c	

Identify the parent function, then determine the type(s) of transformation for each equation.

1.
$$f(x) = x^2 + 2$$

Square root Function: Arrizontal Shift: Right five places

3. $h(x) = \sqrt[3]{x} - 4$

Cube Root Function: 💦 🗡 Vertical Shift: Down four places

4. j(x) = -|x+2|

Absolute Value Function: Horizontal Shift: left two places AND x-axis Reflection

Use the following to answer questions 1-6:

5. Graph h(x) = f(x) - 2 and

state the domain and range

 Graph h(x) = f(x - 2) and state the domain and range of h.

Domain: [-3, 4] Range: [-4, 1]

- **11.** Determine the function represented by the graph.
- **12.** Determine the function represented by the graph.

Even Function	 f(-x) = f(x) for all x in the domain of f symmetric to the y-axis
Odd Function	 f(-x) = -f(x) for all x in the domain of f Symmetric to the origin

Determine whether the following functions are even, odd or neither.

13.
$$f(x) = x^2 + 4$$
14. $f(x) = 5x^3 - x$
15. $f(x) = x^3 + 1$
 $f(-x) = (-x)^2 + 4$
 $f(-x) = 5(-x)^3 - (-x)$
 $f(-x) = (-x)^3 + 1$
 $= x^2 + 4$
 $= -5x^3 + 1$
 $= -f(x)$

 Function is Even
 Function is Odd
 Function is neither

6.4 Quadratic Functions

Essential Question(s):

- How do you graph quadratic functions?
- How do you solve quadratic inequalities?

1. Find the vertex form of the quadratic function $f(x) = x^2 - 20x + 9$.

 $f(x) = (x^2 - 20x + 100) + 9 - 100$ $f(x) = (x - 10)^2 - 91$

2. Find the standard form equation of the quadratic function whose graph is shown.

3. Find the standard form equation of the quadratic function whose graph is shown.

- 4. Given: $g(x) = -3(x+2)^2 + 3$
- **a.** Find the coordinates of the vertex. Is it a maximum or a minimum?

<mark>(-2, 3) maximum</mark>

b. Find the equation of the axis of symmetry.

x = -2

c. Find the domain and range.

Domain: $(-\infty,\infty)$ Range: $(-\infty,3]$

e. Sketch the graph

f. Find the intervals over which *f* is increasing and decreasing.

d. Find the *x*- and *y*-intercepts.

$$0 = -3(x+2)^{2} + 3$$

$$3(x+2)^{2} = 3$$

$$(x+2)^{2} = 1$$

$$x+2 = \pm 1$$

$$x = -2 \pm 1$$

$$x = -3, -1$$

$$g(0) = -3(0+2)^{2} + 3$$

$$g(0) = -3(4) + 3 = -9$$

- 5. Given: $f(x) = x^2 + 2x 1$
- **a.** Find the coordinates of the vertex. Is it a maximum or a minimum?

$$x = \frac{-2}{2(1)} = -1$$

f(-1) = (-1)² + 2(-1) - 1
f(-1) = 1 - 2 - 1 = -2
(-1, -2) minimum

d. Find the *x*- and *y*-intercepts.

$$0 = x^{2} + 2x - 1$$

$$x = \frac{-2 \pm \sqrt{4 + 4}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{2}}{2}$$

$$x = -1 \pm \sqrt{2}$$

$$x = -2.41, 0.41$$

$$f(0) = 0^{2} + 2(0) - 1 = -2$$

b. Find the equation of the axis of symmetry.

c. Find the domain and range.

Domain: (–∞,∞) Range: [–2,∞)

e. Sketch the graph

f. Find the intervals over which *f* is increasing and decreasing.

Solving Quadratic Inequalities

Examples

Modeling with Quadratic Functions

Height of an object t seconds after it is dropped from an initial height of h_0 feet	$h(t) = h_0 - 16t^2$

Examples:

9. A farmer wants to enclose a rectangular field along a river on three sides. If 2,400 feet of fencing is to be used, what dimensions will maximize the enclosed area?

$$A = lw$$

$$P = 2l + w$$

$$2400 = 2l + w$$

$$w = 2400 - 2l$$

$$A = l(2400 - 2l)$$

$$A = 2400l - 2l^{2}$$

$$l = \frac{-2400}{2(-2)} = \frac{-2400}{-4} = 600$$

length = 600 ft
width = 1200 ft

10. A ball is dropped off a 196-ft high building. When will the ball hit the ground?

$$h(t) = -16t^{2} + 196$$

$$0 = -4(4t^{2} - 49)$$

$$4t^{2} - 49 = 0$$

$$(2t + 7)(2t - 7) = 0$$

$$t = \pm \frac{7}{2}$$

$$t = 3.5$$
 seconds