\qquad

6.1 Functions

Essential Question:

- What is a function?

Relation	A set of ordered pairs such that each member of the domain corresponds to $\underline{a t}$ least one member of the range
Function	A set of ordered pairs such that each member of the domain corresponds to exactly one member of the range
Domain	The set of x^{\prime} s (inputs, abscissas, independents) that when plugged into the function give REAL NUMBER results
Range	The set of y^{\prime} ' (outputs, ordinates, dependents)
Ordered Pairs	$(x, y) \quad$ (input, output) (Independent, Dependent)

Examples:

Indicate whether the set defines a function. If it does, state the domain and range of the function.

1. $\{(6,8),(7,9),(8,10),(9,11)\}$

A function

Domain $=\{6,7,8,9\}$
Range $=\{8,9,10,11\}$
2. $\{(1,3),(1,4),(1,5),(1,6)\}$

Not a function
3. $\{(1,6),(2,6),(3,6),(4,6)\}$

A function
Domain $=\{1,2,3,4\}$
Range $=\{6\}$

Determine whether each of the following relations is a function. If it is a function, identify the domain and range.
4.

A) Not a Function
5.

A) Function
B) $\mathrm{D}=\{1,2,3,4\}$

$$
R=\{-1,0,1\}
$$

The Vertical Line Test

If a vertical line intersects a graph in more than one point, the graph is not that of a function

Examples:

Indicate whether the graph is the graph of a function.
6.

Function - the vertical line only touches the graph in one point
7.

Not a function - the vertical line touches the graph in two places.

Algebraic Function Test	Solve the equation for y, then determine if for each x-value there is only one corresponding y value. \rightarrow odd exponents on the y-value are functions \rightarrow even exponents on the y-value are NOT functions

Examples:
Indicate whether the equation defines a function with independent variable x.
8. $4 x^{2}+y=-9$

$$
y=-9-4 x^{2}
$$

function
9. $6 x-y^{2}=7$

$$
\begin{aligned}
& y^{2}=6 x-7 \\
& y= \pm \sqrt{6 x-7}
\end{aligned}
$$

Not a function - there are TWO y-values for the same x-value
10.

$$
\begin{aligned}
-3 x+y^{3} & =8 \\
y & =\sqrt[3]{3 x+8}
\end{aligned}
$$

Function
11. $-2 x+y^{2}=3$

$$
\begin{aligned}
& y^{2}=2 x+3 \\
& y= \pm \sqrt{2 x+3} \\
& \text { Not a function }
\end{aligned}
$$

Function Notation	$f(x)$ replaces the \boldsymbol{y} variable read " f of $\boldsymbol{x \prime \prime}$ Example: $y=x^{3}+1$ is the same as $f(x)=x^{3}+1$

Examples:

Evaluate each of the following functions.
12. Find the value of $f(2)$ if $f(x)=-x+8$.

$$
\begin{aligned}
& f(2)=-2+8 \\
& f(2)=6
\end{aligned}
$$

13. Find $f(a-2)$ if $f(x)=-x-5$.

$$
\begin{aligned}
& f(a-2)=-(a-2)-5 \\
& f(a-2)=-a+2-5 \\
& f(a-2)=-a-3
\end{aligned}
$$

Finding the Domain of a Function	
Fractions	Rational means fractional \rightarrow denominator of a fraction $\neq 0$
Radicals	Expressions under square roots must be positive or zero \rightarrow You cannot substitute any value for a variable in the radical that would cause the radicand to be negative. \rightarrow Negatives in a square root result in imaginary numbers.

- Any other functions will not have restrictions on the domain unless otherwise noted.

Examples:
Find the domain of the following functions. Write answers in interval notation.
14. $g(x)=\sqrt{x+4}$

$$
\begin{aligned}
& x+4 \geq 0 \\
& x \geq-4
\end{aligned}
$$

16. $g(x)=\sqrt{2 x-3}$

$$
\begin{aligned}
& 2 x-3 \geq 0 \\
& x \geq \frac{3}{2} \\
& {\left[\frac{3}{2}, \infty\right)}
\end{aligned}
$$

15. $k(x)=\frac{2 x-13}{x^{2}-2 x-35}$

$$
\begin{aligned}
& x^{2}-2 x-35 \neq 0 \\
& (x+5)(x-7) \neq 0 \\
& x \neq-5,7
\end{aligned}
$$

$$
(-\infty,-5) \cup(-5,7) \cup(7, \infty)
$$

17. $k(x)=\frac{x+2}{x^{2}-16}$

$$
\begin{aligned}
& x^{2}-16 \neq 0 \\
& (x+4)(x-4) \neq 0 \\
& x \neq-4,4
\end{aligned}
$$

$$
(-\infty,-4) \cup(-4,4) \cup(4, \infty)
$$

Difference Quotient	$\frac{f(x+h)-f(x)}{h}$

Example:

Evaluate the difference quotient for each of the following.
18. $f(x)=2 x+10$

$$
\begin{aligned}
\frac{2(x+h)+10-(2 x+10)}{h} & =\frac{2 x+2 h+10-2 x-10}{h} \\
& =\frac{2 h}{h} \\
& =2
\end{aligned}
$$

19. $f(x)=x^{2}-9$

$$
\begin{aligned}
\frac{(x+h)^{2}-9-\left(x^{2}-9\right)}{h} & =\frac{x^{2}+2 x h+h^{2}-9-x^{2}+9}{h} \\
& =\frac{2 x h+h^{2}}{h} \\
& =\frac{h(2 x+h)}{h} \\
& =2 x+h
\end{aligned}
$$

20. $f(x)=x^{2}+7$

$$
\begin{aligned}
\frac{(x+h)^{2}+7-\left(x^{2}+7\right)}{h} & =\frac{x^{2}+2 x h+h^{2}+7-x^{2}-7}{h} \\
& =\frac{2 x h+h^{2}}{h} \\
& =\frac{h(2 x+h)}{h} \\
& =2 x+h
\end{aligned}
$$

6.2 Graphing Functions

Essential Question(s):

- How do you graph piecewise-defined functions?

| x - intercept | zero, root, solution
 Where graph crosses the x - axis
 Where the y-value is zero : $(x, 0)$ |
| :--- | :--- | :--- |
| y-intercept | Where graph crosses the y - axis
 Where the x-value is zero : $(0, y)$ |
| Continuous Function | Example: |
| A function that has no breaks, gaps, or holes. | |

Characteristics of a function
On an open interval, for any a and b in the interval:
1. If $a<b$ while $f(a)<f(b)$ for all values, then the function is increasing
Translation: as x increases, y increases
2. If $a<b$ while $f(a)>f(b)$ for all values, then the function is decreasing
Translation: as x increases, y decreases
3. If for all a and b in that interval $f(a)=f(b)$, then the function is constant
Translation: as x increases, y-value does NOT change

Examples:

Use the following graph to answer questions 1-8:

1. Find the domain of f.

$$
(-\infty,-2) \cup(-2, \infty)
$$

2. Find the range of f.

$$
(-\infty,-3) \cup(1, \infty)
$$

4. Find the y-intercept(s).
y intercept: -3
5. Find the intervals over which f is decreasing.

$$
(-\infty,-2) \cup(1, \infty)
$$

8. Find any points of discontinuity.

$$
x=-2
$$

9. $f(x)=\frac{3 x+12}{2 x-8}$
a. Find the domain of f.

$$
\begin{aligned}
& 2 x-8 \neq 0 \\
& 2 x \neq 8 \\
& x \neq 4
\end{aligned}
$$

b. Find the x-intercept.

$$
\begin{aligned}
& 0=\frac{3 x+12}{2 x-8} \\
& 0=3 x+12 \\
& -3 x=12 \\
& x=-4
\end{aligned}
$$

c. Find the y-intercept.

$$
\begin{aligned}
& f(0)=\frac{3(0)+12}{2(0)-8} \\
& f(0)=\frac{12}{-8}=-1.5
\end{aligned}
$$

10. $f(x)=\frac{x^{2}-1}{x^{2}+100}$
a. Find the domain of f.
$x^{2}+100=0$
\{all real numbers \}
b. Find the x-intercept.

$$
\begin{aligned}
& 0=\frac{x^{2}-1}{x^{2}+100} \\
& 0=x^{2}-1 \\
& 1=x^{2} \\
& \pm 1=x
\end{aligned}
$$

c. Find the y-intercept.

$$
\begin{aligned}
& f(0)=\frac{0^{2}-1}{0^{2}+100} \\
& f(0)=\frac{-1}{100}=-.01
\end{aligned}
$$

Page 7

11. a. Use the graphing calculator sketch the graph of $y=x^{3}-4 x^{2}+x+1$.
(0.1, 1.1)
b. Identify all x - and y-intercepts.

Use 2nd \rightarrow Trace $\rightarrow 2$: Zero to find the x-intercepts.
Use 2nd \rightarrow Trace $\rightarrow 1$: Value to find the y-intercepts.
c. Identify all maximum and minimum values.

Use 2nd \rightarrow Trace \rightarrow 3: Minimum \rightarrow Identify: Left Bound, Right Bound, and Guess values Use 2nd \rightarrow Trace $\rightarrow 4$: Maximum \rightarrow Identify: Left Bound, Right Bound, and Guess values
d. Identify the intervals over which the graph is increasing and decreasing.

Increasing: $(-\infty, 0.1) \cup(2.5, \infty)$
Decreasing: $(0.1,2.5)$

Piecewise function	A function that is defined by two (or more) equations over a specified domain

Examples:

Make a sketch of the following functions
12. $f(x)=\left\{\begin{array}{c}x-2, x \neq 2 \\ 3, x=2\end{array}\right.$

13. $f(x)=\left\{\begin{array}{c}x^{2},-1 \leq x \leq 1 \\ x, x>1\end{array}\right.$

14. Given: $f(x)=\left\{\begin{array}{llr}x+2 & \text { if } & -4 \leq x<1 \\ -x & \text { if } & 1 \leq x \leq 5\end{array}\right.$
a. Find $f(-4), f(1)$, and $f(5)$.

$$
\begin{aligned}
& f(-4)=-4+2 \\
& f(-4)=-2 \\
& f(1)=-1
\end{aligned}
$$

$$
f(5)=-5
$$

b. Sketch the graph of f.

c. Find the domain, range, and all points of discontinuity.

Domain: $[-4,5]$
Range: $[-5,3)$
Discontinuous at $x=1$
15. Find a piecewise definition for the graph of $f(x)$.
$f(x)= \begin{cases}1 & x \leq-3 \\ -x+2 & -3<x \leq 2 \\ 4 & x>2\end{cases}$

16. Find a piecewise definition for the graph of $f(x)$.
$f(x)=\left\{\begin{array}{lc}-x-1 & x<-2 \\ -3 & -2<x \leq 1 \\ -x-2 & x>1\end{array}\right.$

6.3 Transformations of Functions

Essential Question(s):

- How do you graph vertical and horizontal shifts, reflections, and size transformations of functions?
- What are even and odd functions?

Sketch graphs for each of the following parent functions. Find their domains and ranges, and determine if they are even, odd, or neither.

Constant Function: $f(x)=c$

Domain: $(-\infty, \infty)$
Range: c
Even function
Absolute Value Function: $f(x)=|x|$

Domain: $(-\infty, \infty)$
Range: [$0, \infty$)
Even function
Square Root Function: $f(x)=\sqrt{x}$

Domain: $(-\infty, \infty)$
Range: [0, ∞)
Neither

Identity Function: $f(x)=x$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Odd function
Standard Quadratic Function: $f(x)=x^{2}$

Domain: $(-\infty, \infty)$
Range: [$0, \infty$)
Even function
Standard Cubic Function: $f(x)=x^{3}$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Odd function

Cube Root Function: $f(x)=\sqrt[3]{x}$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Odd function

Transformations on Functions

Let f be a function and c be a positive real number

- $y=f(x)+c$ is the graph of $y=f(x)$ shifted c units upward

Vertical Shifts

- $\quad y=f(x)-c$ is the graph of $y=f(x)$ shifted c units downward
- $\quad y=f(x+c)$ is the graph of $y=f(x)$ shifted c units to the left

Horizontal Shifts

- $\quad y=f(x-c)$ is the graph of $y=f(x)$ shifted c units to the right
- $y=-f(x)$ is the graph of $y=f(x)$ reflected about the $\underline{\mathbf{x} \text {-axis }}$

Reflections

- $\quad y=f(-x)$ is the graph of $y=f(x)$ reflected about the \mathbf{y}-axis
- If $c>1, y=c f(x)$ is the graph of $y=f(x)$ stretched vertically

Vertical Stretching and Shrinking

- If $0<c<1, y=c f(x)$ is the graph of $y=f(x)$ shrunk vertically \rightarrow In both cases, multiply each y-coordinate by c
- If $c>1, y=f(c x)$ is the graph of $y=f(x)$ shrunk horizontally

Horizontal Stretching and Shrinking

- If $0<c<1, y=f(c x)$ is the graph of $y=f(x)$ stretched horizontally \rightarrow In both cases, divide each \mathbf{x}-coordinate by c

Examples:
Identify the parent function, then determine the type(s) of transformation for each equation.

1. $f(x)=x^{2}+2$

Quadratic Function:

2. $g(x)=\sqrt{x-5}$

Square root Function: \longrightarrow Horizontal Shift: Right five places
3. $h(x)=\sqrt[3]{x}-4$

Cube Root Function: \sim Vertical Shift: Down four places
4. $j(x)=-|x+2|$

Absolute Value Function:

Use the following to answer questions 1-6:

Domain: [-3, 4]
Range: $[-4,1]$
5. Graph $h(x)=f(x)-2$ and state the domain and range of h.

Domain: $[-3,4]$
Range: [$-6,-1]$
8. Graph $h(x)=f(x+2)$ and state the domain and range of h.

Domain: $[-5,2]$
Range: $[-4,1]$
6. Graph $h(x)=f(x)+1$ and state the domain and range of h.

Domain: $[-3,4]$
Range: $[-3,2]$
9. Graph $h(x)=-f(x)$ and state the domain and range of h.

Domain: $[-4,3]$
Range: $[-4,1]$
7. Graph $h(x)=f(x-2)$ and state the domain and range of h.

Domain: $[-1,6]$
Range: $[-4,1]$
10. Graph $h(x)=f(-x)$ and state the domain and range of h.

Domain: $[-3,4]$
Range: [-1, 4]
11. Determine the function represented by the graph.

$$
f(x)=|x+2|
$$

12. Determine the function represented by the graph.

$$
f(x)=|x-3|+1
$$

Even Function	- $f(-x)=f(x)$ for all \boldsymbol{x} in the domain of f
- symmetric to the \boldsymbol{y}-axis	
Odd Function	- $f(-x)=-f(x)$ for all \boldsymbol{x} in the domain of f - Symmetric to the origin

Examples:
Determine whether the following functions are even, odd or neither.
13. $f(x)=x^{2}+4$

$$
\begin{aligned}
f(-x) & =(-x)^{2}+4 \\
& =x^{2}+4 \\
& =f(x)
\end{aligned}
$$

Function is Even
14. $f(x)=5 x^{3}-x$

$$
\begin{aligned}
f(-x) & =5(-x)^{3}-(-x) \\
& =-5 x^{3}+1 \\
& =-f(x)
\end{aligned}
$$

Function is Odd
15. $f(x)=x^{3}+1$

$$
\begin{aligned}
f(-x) & =(-x)^{3}+1 \\
& =-x^{3}+1
\end{aligned}
$$

Function is neither even nor odd

6.4 Quadratic Functions

Essential Question(s):

- How do you graph quadratic functions?
- How do you solve quadratic inequalities?

Quadratic Equations	
	$f(x)=a x^{2}+b x+c$
Standard Form	vertex \rightarrow coordinate: $(x, f(x))$, where $x=\frac{-b}{2 a}$ axis of symmetry \rightarrow vertical line: $x=\frac{-b}{2 a}$ Maximum vs Minimum \rightarrow Always occurs at the vertex if $a>0$ (positive) \rightarrow minimum \rightarrow graph opens upward if $a<0$ (negative) \rightarrow maximum \rightarrow graph opens downward
	$f(x)=a(x-h)^{2}+k$
Vertex Form	vertex \rightarrow coordinate: (h, k) axis of symmetry \rightarrow vertical line: $x=h$ Maximum vs Minimum \rightarrow Always occurs at the vertex if $a>0$ (positive) \rightarrow minimum \rightarrow graph opens upward if $a<0$ (negative) \rightarrow maximum \rightarrow graph opens downward

Examples:

1. Find the vertex form of the quadratic function $f(x)=x^{2}-20 x+9$.
$f(x)=\left(x^{2}-20 x+100\right)+9-100$
$f(x)=(x-10)^{2}-91$
2. Find the standard form equation of the quadratic function whose graph is shown.

3. Find the standard form equation of the quadratic function whose graph is shown.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& 2=a(0+2)^{2}+1 \\
& 1=4 a \\
& a=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{1}{4}(x+2)^{2}+1 \\
& f(x)=\frac{1}{4}\left(x^{2}+4 x+4\right)+1 \\
& f(x)=\frac{1}{4} x^{2}+x+2
\end{aligned}
$$

4. Given: $g(x)=-3(x+2)^{2}+3$
a. Find the coordinates of the vertex. Is it a maximum or a minimum?
$(-2,3)$ maximum
b. Find the equation of the axis of symmetry.

$$
x=-2
$$

c. Find the domain and range.

Domain: $(-\infty, \infty)$
Range: $(-\infty, 3]$
e. Sketch the graph

f. Find the intervals over which f is increasing and decreasing.

Increasing ($-\infty,-2$)
Decreasing $(-2, \infty)$
5. Given: $f(x)=x^{2}+2 x-1$
a. Find the coordinates of the vertex. Is it a maximum or a minimum?

$$
\begin{aligned}
& x=\frac{-2}{2(1)}=-1 \\
& f(-1)=(-1)^{2}+2(-1)-1 \\
& f(-1)=1-2-1=-2 \\
& (-1,-2) \text { minimum }
\end{aligned}
$$

d. Find the x - and y-intercepts.

$$
\begin{aligned}
& 0=x^{2}+2 x-1 \\
& x=\frac{-2 \pm \sqrt{4+4}}{2} \\
& x=\frac{-2 \pm 2 \sqrt{2}}{2} \\
& x=-1 \pm \sqrt{2} \\
& x=-2.41,0.41 \\
& f(0)=0^{2}+2(0)-1=-1
\end{aligned}
$$

b. Find the equation of the axis of symmetry.

$$
x=-1
$$

c. Find the domain and range.

Domain: $(-\infty, \infty)$
Range: $[-2, \infty)$
e. Sketch the graph

f. Find the intervals over which f is increasing and decreasing.

$$
\begin{aligned}
& \text { Increasing }(-1, \infty) \\
& \text { Decreasing }(-\infty,-1)
\end{aligned}
$$

Solving Quadratic Inequalities

Examples

7. Solve the inequality. $\quad x^{2}-5 x<-4$

$$
\begin{aligned}
& x^{2}-5 x+4<0 \\
& (x-4)(x-1)<0
\end{aligned}
$$

$(1,4)$
8. Solve the inequality. $x^{2}-5 x+6 \geq 0$

$$
(-\infty, 2] \cup[3, \infty)
$$

Modeling with Quadratic Functions

Height of an object t seconds after it is dropped from an initial height of h_{0} feet

$$
h(t)=h_{0}-16 t^{2}
$$

Examples:
9. A farmer wants to enclose a rectangular field along a river on three sides. If 2,400 feet of fencing is to be used, what dimensions will maximize the enclosed area?

$$
\begin{aligned}
& A=l w \\
& P=2 l+w \\
& 2400=2 l+w \\
& w=2400-2 l \\
& A=l(2400-2 l) \\
& A=2400 l-2 l^{2} \\
& l=\frac{-2400}{2(-2)}=\frac{-2400}{-4}=600 \\
& \text { length }=600 \mathrm{ft} \\
& \text { width }=1200 \mathrm{ft}
\end{aligned}
$$

10. A ball is dropped off a $196-\mathrm{ft}$ high building. When will the ball hit the ground?

$$
\begin{aligned}
& h(t)=-16 t^{2}+196 \\
& 0=-4\left(4 t^{2}-49\right) \\
& 4 t^{2}-49=0 \\
& (2 t+7)(2 t-7)=0 \\
& t= \pm \frac{7}{2} \\
& t=3.5 \text { seconds }
\end{aligned}
$$

