\qquad

5.1 Cartesian Coordinate System

Essential Question(s):

- How do you use symmetry as an aid in graphing?

Ordered Pair	A pair of numbers for which the order is important. $(\mathbf{x}, \mathrm{y}) ;$ (Domain, Range); (Abscissa, Ordinate)
Solution (to an equation in two variables)	An ordered pair of numbers ($\mathbf{x}, \mathrm{y})$ that makes the equation true.

Reflections and Symmetry	
x-axis	Reflection: $(a, b) \rightarrow(a,-b)$ Symmetry Test: replace y with $-y$ then simplify
y-axis	Reflection: $(a, b) \quad \rightarrow(-a, b)$ Symmetry Test: replace x with $-x$ then simplify
origin	Reflection: $(a, b) \quad \rightarrow(-a,-b)$ Symmetry Test: replace x with $-x$ AND y with $-y$ then simplify

1. Find the coordinates of points A, B, C, and D.

$$
\begin{aligned}
& A=(1,5) \\
& B=(-5,0) \\
& C=(-4,-3) \\
& D=(2,-1)
\end{aligned}
$$

2. Reflect A, B, C, and D through the \boldsymbol{y}-axis and give the coordinates of the reflected points

$$
\begin{aligned}
& A^{\prime}=(-1,5) \\
& B^{\prime}=(5,0) \\
& C^{\prime}=(4,-3) \\
& D^{\prime}=(-2,-1)
\end{aligned}
$$

3. Reflect A, B, C, and D through the x-axis and give the coordinates of the reflected points.

$$
\begin{aligned}
& A^{\prime}=(1,-5) \\
& B^{\prime}=(-5,0) \\
& C^{\prime}=(-4,3) \\
& D^{\prime}=(2,1)
\end{aligned}
$$

4. Reflect A, B, C, and D through the origin and give the coordinates of the reflected points.

$$
\begin{aligned}
& A=(-1,-5) \\
& B=(5,0) \\
& C=(4,3) \\
& D=(-2,1)
\end{aligned}
$$

5. Use the graph to estimate to the nearest integer the missing coordiante(s) of the point.
a. (-3, ?)
-4
b. $(?, 0)$
$-5,1$, and 5
6. Test the equation for symmetry with respect to the x-axis, the y-axis, and the origin.

$$
x^{2}+x y^{2}+x=9
$$

$$
\begin{gathered}
x-\text { axis: } \\
x^{2}+x(-y)^{2}+x=9 \\
x^{2}+x y^{2}+x=9 \\
\text { yes } \\
y-\text { axis: } \\
(-x)^{2}+-x y^{2}+-x=9 \\
x^{2}-x y^{2}-x=9
\end{gathered}
$$

no
origin:

$$
\begin{aligned}
& (-x)^{2}+-x(-y)^{2}+-x=9 \\
& x^{2}-x y^{2}-x=9
\end{aligned}
$$

no

Symmetric with respect to the x-axis

7. Test the equation for symmetry with respect to the x-axis, the y-axis, and the origin. Sketch the graph of the equation.

$$
y+1=x^{2}
$$

x - axis:
$-y+1=x^{2}$
No
y-axis:
$y+1=(-x)^{2}$
$y+1=x^{2}$
Yes

origin:
$-y+1=(-x)^{2}$
$-y+1=x^{2}$
no

Symmetric with respect to the y-axis

5.2 Distance in the Plane

Essential Question(s):

- How do you find the distance between two points?
- How do you find the midpoint of a line segment?
- How do you write the equation of a circle?

Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

1. Find the distance between $(-6,7)$ and $(3,-5)$.

$$
\begin{aligned}
& D=\sqrt{(-6-3)^{2}+[7-(-5)]^{2}} \\
& D=\sqrt{(-9)^{2}+12^{2}} \\
& D=\sqrt{81+144} \\
& D=\sqrt{225} \\
& D=15
\end{aligned}
$$

2. Find x such that $(x, 5)$ is 10 units from $(-2,11)$

$$
\begin{aligned}
& 10=\sqrt{[x-(-2)]^{2}+(5-11)^{2}} \\
& 10=\sqrt{(x+2)^{2}+(-6)^{2}} \\
& 10=\sqrt{(x+2)^{2}+36} \\
& 10^{2}=\left(\sqrt{(x+2)^{2}+36}\right)^{2} \\
& 100=(x+2)^{2}+36 \\
& 64=(x+2)^{2} \\
& \sqrt{64}=\sqrt{(x+2)^{2}} \\
& \pm 8=x+2 \\
& -2 \pm 8=x \\
& -10,6=x
\end{aligned}
$$

Midpoint Formula

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

3. Find the midpoint of the line segment with endpoints $(5,8)$ and $(1,4)$.

$$
\begin{aligned}
& \left(\frac{5+1}{2}, \frac{8+4}{2}\right) \\
& \left(\frac{6}{2}, \frac{12}{2}\right) \\
& (3,6)
\end{aligned}
$$

4. The midpoint of the line segment with endpoints $(6,1)$ and $\left(b_{1}, b_{2}\right)$ is $(3,4)$. Find b_{1} and b_{2}.

$$
\begin{array}{ll}
\frac{6+b_{1}}{2}=3 & \frac{1+b_{2}}{2}=4 \\
6+b_{1}=6 & 1+b_{2}=8 \\
b_{1}=0 & b_{2}=7
\end{array}
$$

Equations of a Circle	
Standard Form	$(x-h)^{2}+(y-k)^{2}=r^{2}$ Where (h, k) is the center and r is the radius
General Form	$x^{2}+y^{2}+D x+E y+F=0$ Where D, E and F are real numbers

5. Write the equation of a circle with the indicated center and radius.

$$
\begin{gathered}
C=(3,-2), r=3 \\
(x-3)^{2}+(y+2)^{2}=3^{2} \\
(x-3)^{2}+(y+2)^{2}=9
\end{gathered}
$$

6. Write an equation for the set of all points that are one unit from ($0,-1$).

$$
\begin{aligned}
& x^{2}+(y+1)^{2}=1^{2} \\
& x^{2}+(y+1)^{2}=1
\end{aligned}
$$

$$
(x-3)^{2}+y^{2}=16
$$

8. Find the center and radius of the circle.

$$
(x-6)^{2}+(y-8)^{2}=100
$$

Center $(6,8)$ and radius 10

9. Graph the circle by finding the center and radius.

$$
\begin{gathered}
x^{2}+4 x+y^{2}=0 \\
\left(x^{2}+4 x+4\right)+y^{2}=0+4 \\
(x+2)^{2}+y^{2}=4
\end{gathered}
$$

Center: $(-2,0)$

Radius: 2

10. Write the given equation of a circle in standard form. Then find the center and radius.

$$
\begin{aligned}
& x^{2}+y^{2}-8 x+6 y-24=0 \\
& x^{2}-8 x+y^{2}+6 y=24 \\
& x^{2}-8 x+16+y^{2}+6 y+9=24+16+9 \\
&(x-4)^{2}+(y+3)^{2}=49
\end{aligned}
$$

Center: $(4,-3)$

Radius: 7
11. Find the equation of circle with the given center whose graph passes through the given points. Center: $(-5,4)$, point on the circle: $(2,-3)$

$$
\begin{aligned}
& (2+5)^{2}+(-3-4)^{2}=r^{2} \\
& 7^{2}+(-7)^{2}=r^{2} \\
& 49+49=r^{2} \\
& 98=r^{2} \\
& (x+5)^{2}+(y-4)^{2}=98
\end{aligned}
$$

5.3 Equations of a Line

Essential Question(s):

- How do you find the slope of a line?
- How do you find the equation of a line?

Slope		
The slope m of a nonvertical line is the ratio of the vertical change (the rise) to the horizontal change (the run) between any two points on the line$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}=\text { rate of change }$		
Positive Slope		Negative Slope ill
Special Cases		
$(3,6) \quad$ Vertical Lines Undefined or No Slope $(3,-2) \quad m=\frac{6+2}{3-3}=\frac{8}{0}=\varnothing$	$\stackrel{\circ}{(-2,4)}$	Horizontal Lines Zero Slope $(5,4) \quad m=\frac{4-4}{-2-5}=\frac{0}{-7}=0$

Examples

Find the slope of the line passing through the given points.

1. $(-7,5),(4,-2)$
2. $(3,5),(3,2)$
3. $(5,5),(-4,5)$
$m=\frac{5-(-2)}{-7-4}=\frac{7}{-11}$
$m=\frac{5-2}{3-3}=\frac{3}{0}=$ undefined
Vertical line
$m=\frac{5-5}{5-(-4)}=\frac{0}{9}=0$
Horizontal line

Different Forms of Linear Equations

Slope-intercept Form	A linear equation written in the form $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ or $f(x)=m x+b$ - m is the slope - b is the y-intercept. - Best form for graphing.
Standard form	A linear equation written in the form $\boldsymbol{A x}+\boldsymbol{B y}=\boldsymbol{C}$, - A, B and C are integers - A is positive - m is $\frac{-A}{B}$
Point-slope Form	A linear equation written in the form $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$, - m is the slope - $\left(x_{1}, y_{1}\right)$ is a coordinate on the line
Vertical Line	$x=a$ where a is the x-intercept Vertical lines have undefined or no slope
Horizontal Line	$y=b$ where b is the y-intercept Horizontal lines have zero slope

Examples

4. Find the equation in standard form of the line.

$$
\begin{aligned}
& y=-2 x+4 \\
& 2 x+y=4
\end{aligned}
$$

5. Graph the line $3 x+2 y=6$.

$$
\begin{aligned}
& 2 y=-3 x+6 \\
& y=\frac{-3}{2}+3
\end{aligned}
$$

6. Given the equation $3 x+2 y=6$, find the slope, if it exists.

$$
-\frac{3}{2}
$$

8. Find the equation of the line with slope $\frac{2}{3}$ and y-intercept 8. Write the equation in standard form.

$$
\begin{aligned}
& y=\frac{2}{3} x+8 \\
& -3\left(-\frac{2}{3} x+y=8\right) \\
& 2 x-3 y=-24
\end{aligned}
$$

10. Sketch a graph of the line that contains the point $(0,3)$ and has slope -3 . Then write the equation of the line in the slope intercept form.

$$
y=-3 x+3
$$

7. Given the equation, $y=-3$, find the slope, if it exists.

0
9. Write the equation of the line that passes through point $(0,1)$ with slope $\frac{3}{5}$. Give your answer in the slope-intercept form.

$$
y=\frac{3}{5} x+1
$$

11. Write the equation of the line passing through $(-4,-7)$ and $(3,0)$. Write your answer in the slope-intercept form.

$$
\begin{aligned}
& m=\frac{-7-0}{-4-3}=\frac{-7}{-7}=1 \\
& y=1(x-3) \\
& y=x-3
\end{aligned}
$$

Parallel and Perpendicular Lines				
Parallel Lines	$\begin{array}{r}\text { Parallel lines have equal slopes } \\ \text { Examples: } m=2 \text { and } m_{\\|}=2 \\ m=3 / 4\end{array}$			
and $m_{\\|}=3 / 4$		$]$	Perpendicular Lines have opposite reciprocal slopes (flip the fraction and	
:---				
change the sign)				
Examples: $m=2$ and $m_{\perp}=-1 / 2$				
$m=3 / 4$ and $m_{\perp}=-4 / 3$				

12. Write an equation of the line passing through $(-4,-7)$, and parallel to $y=2 x+5$. Write your answer in standard form.

$$
\begin{aligned}
& y+7=2(x+4) \\
& y+7=x+8 \\
& y=2 x+1 \\
& -2 x+y=1 \\
& -1(-2 x+y=1) \\
& 2 x-y=-1
\end{aligned}
$$

13. Write an equation of the line passing through $(-8,-3)$, and perpendicular to $y=\frac{1}{4} x+2$. Write your answer in standard form.

$$
\begin{aligned}
& y+3=-4(x+8) \\
& y+3=-4 x-32 \\
& y=-4 x-35 \\
& 4 x+y=-35
\end{aligned}
$$

5.4 Linear Equations and Models

Essential Question(s):

- How do you find the line of best fit?

Mathematical Model	Mathematical representation (an equation/graph) of a real-world problem
Linearly related variables	Variables related by a linear equation
Rate of change	The slope of a linear equation
Regression analysis (Curve fitting)	The process of finding a function to model a set of data points
Scatter Plot	The graph of the points in a data set
Regression line	The line of best fit for a set of data points Sometimes called the Least-squares regression line Interpolation Using the regression line to approximate points located within the range of the data set
Using the regression line to approximate points located outside of the range	
of the data set	

Use the following to answer questions 1-2:

The Number Two Plumbing Co. charges $\$ 35$ per hour plus a fixed service call charge of $\$ 45$.

1. Write an equation that will allow you to compute the total bill for any number of hours, x, that it takes to complete a job.

$$
C=35 x+45
$$

2. If the bill comes to $\$ 120.25$, how many hours did the job take?

Use the following to answer questions 3-6:

A driver going down a straight highway is traveling at $70 \mathrm{ft} / \mathrm{sec}$ on cruise control when he begins accelerating at a rate of $4.2 \mathrm{ft} / \mathrm{sec}^{2}$. The velocity of the car in $\mathrm{ft} / \mathrm{sec}$ is given by the function $V=4.2 t+70$, where t is in seconds.
3. Interpret the meaning of the slope of this model.

Every second the velocity is increasing by 4.2 $\mathrm{ft} / \mathrm{sec}$.
4. What is the effect of a 1 second increase in time traveled?

The velocity increases by $4.2 \mathrm{ft} / \mathrm{sec}$.
6. If the car is traveling at $100 \mathrm{ft} / \mathrm{sec}$, for how long did it accelerate? (Round to the nearest tenth of a second.)
$100=4.2 t+70$
$30=4.2 t$
$7.1=t$
7.1 seconds

Regression Analysis on TI Graphing Calculator

1. Enter all x - and y-values into a list: Stat \rightarrow Edit
\rightarrow Enter x-values into list 1 (L1),
\rightarrow Enter y-values into list $2(\mathrm{L2})$
 $\rightarrow \mathrm{Y}$-Vars \rightarrow function $\rightarrow \mathrm{Y} 1 \rightarrow$ Enter
2. Turn on the scatter plot: 2 nd $\rightarrow Y=\rightarrow$ Enter \rightarrow On, Type: Scatter, Xlist:L1, Ylist:L2
3. Graph: Zoom $\rightarrow 9:$ ZStat \rightarrow Enter

Use the following ordered pairs to answer questions 7-10:

$$
(4,14), \quad(1,6), \quad(3,9), \quad(2,9), \quad(5,17), \quad(7,20), \quad(6,16)
$$

7. Find the linear regression for the data. (Round all values to the nearest hundredth.)

$$
y=2.28 x+3.85
$$

8. Plot the data and the model on the same axes.

9. Use the model to estimate y when $x=3.5$.

$$
\begin{aligned}
& y=2.28(3.5)+3.85 \\
& y=11.83
\end{aligned}
$$

10. Use the model to estimate y when $x=20$.

$$
\begin{aligned}
& y=2.28(20)+3.85 \\
& y=49.45
\end{aligned}
$$

