## 5.1 Cartesian Coordinate System

Essential Question(s):

• How do you use symmetry as an aid in graphing?



| Ordered Pair                               | A pair of numbers for which the order is important.<br>(x, y); (Domain, Range); (Abscissa, Ordinate) |
|--------------------------------------------|------------------------------------------------------------------------------------------------------|
| Solution (to an equation in two variables) | An ordered pair of numbers (x, y) that makes the equation true.                                      |

| Reflections and Symmetry |                                                                                               |
|--------------------------|-----------------------------------------------------------------------------------------------|
| <i>x</i> -axis           | <b>Reflection:</b> $(a,b) \rightarrow (a,-b)$                                                 |
|                          | <b>Symmetry Test:</b> replace <mark>y with –y</mark> then simplify                            |
| y-axis                   | <b>Reflection:</b> $(a,b) \rightarrow (-a,b)$                                                 |
|                          | Symmetry Test: replace <mark>x with –x</mark> then simplify                                   |
| origin                   | Reflection: $(a,b) \rightarrow (-a,-b)$                                                       |
|                          | <b>Symmetry Test:</b> replace <mark>x with –x</mark> AND <mark>y with –y</mark> then simplify |

**1.** Find the coordinates of points *A*, *B*, *C*, and *D*.

| <mark>A = (1, 5)</mark> |
|-------------------------|
| B = (-5, 0)             |
| C = (-4, -3)            |
| D = (2, -1)             |
|                         |

2. Reflect *A*, *B*, *C*, and *D* through the **y**-axis and give the coordinates of the reflected points

| A' | = (–1, 5)              |
|----|------------------------|
| B' | <mark>= (5, 0)</mark>  |
| C' | <mark>= (4, -3)</mark> |
| D' | = (-2, -1              |

**3.** Reflect *A*, *B*, *C*, and *D* through the *x*-axis and give the coordinates of the reflected points.

| <mark>Aʻ=(1,5)</mark> |
|-----------------------|
| B' = (-5, 0)          |
| C' = (-4, 3)          |
| D'=(2,1)              |





Reflect A, B, C, and D through the origin and give the coordinates of the reflected points.
 A = (-1, -5)

| A – (-1, -3 |
|-------------|
| B = (5, 0)  |
| C = (4, 3)  |
| D = (-2, 1) |
|             |



5. Use the graph to estimate to the nearest integer the missing coordiante(s) of the point.



V

a. (−3, ?)
-4
b. (?, 0)
-5, 1, and 5

**6.** Test the equation for symmetry with respect to the *x*-axis, the *y*-axis, and the origin.



Symmetric with respect to the x-axis

**7.** Test the equation for symmetry with respect to the *x*-axis, the *y*-axis, and the origin. Sketch the graph of the equation.





Symmetric with respect to the y-axis

**Essential Question(s):** 

- How do you find the distance between two points? •
- How do you find the midpoint of a line segment? •
- How do you write the equation of a circle?



**3.** Find the midpoint of the line segment with endpoints (5, 8) and (1, 4).

$$\left(\frac{5+1}{2}, \frac{8+4}{2}\right)$$
$$\left(\frac{6}{2}, \frac{12}{2}\right)$$
$$(3, 6)$$

4. The midpoint of the line segment with endpoints (6, 1) and  $(b_1, b_2)$  is (3, 4). Find  $b_1$  and  $b_2$ .

$$\frac{6+b_1}{2} = 3 \qquad \frac{1+b_2}{2} = 4 
6+b_1 = 6 \qquad 1+b_2 = 8 
b_1 = 0 \qquad b_2 = 7$$

| Equations of a Circle |                                                         |
|-----------------------|---------------------------------------------------------|
| Standard<br>Form      | $(x-h)^2 + (y-k)^2 = r^2$                               |
|                       | Where $(h,k)$ is the center and r is the radius         |
| General<br>Form       | $x^2 + y^2 + Dx + Ey + F = 0$                           |
|                       | Where <i>D</i> , <i>E</i> and <i>F</i> are real numbers |

**5.** Write the equation of a circle with the indicated center and radius.

$$C = (3, -2), r = 3$$
$$(x-3)^{2} + (y+2)^{2} = 3^{2}$$
$$(x-3)^{2} + (y+2)^{2} = 9$$

**6.** Write an equation for the set of all points that are one unit from (0, -1).

$$x^{2} + (y+1)^{2} = 1^{2}$$
  
 $x^{2} + (y+1)^{2} = 1$ 

**7.** Write the equation of the circle.



8. Find the center and radius of the circle.

$$(x-6)^2 + (y-8)^2 = 100.$$

Center (6, 8) and radius 10

9. Graph the circle by finding the center and radius.

2

$$x^{2} + 4x + y^{2} = 0$$

$$(x^{2} + 4x + 4) + y^{2} = 0 + 4$$

$$(x + 2)^{2} + y^{2} = 4$$

Center: (-2,0)

Radius: 2



10. Write the given equation of a circle in standard form. Then find the center and radius.

~

$$x^{2} + y^{2} - 8x + 6y - 24 = 0$$

$$x^{2} - 8x + y^{2} + 6y = 24$$

$$x^{2} - 8x + 16 + y^{2} + 6y + 9 = 24 + 16 + 9$$

$$(x - 4)^{2} + (y + 3)^{2} = 49$$

Center: (4,−3)

Radius: 7

**11.** Find the equation of circle with the given center whose graph passes through the given points.

Center: (-5, 4), point on the circle: (2, -3)

$$(2+5)^{2} + (-3-4)^{2} = r^{2}$$

$$7^{2} + (-7)^{2} = r^{2}$$

$$49 + 49 = r^{2}$$

$$98 = r^{2}$$

$$(x+5)^{2} + (y-4)^{2} = 98$$



# 5.3 Equations of a Line

Essential Question(s):

- How do you find the slope of a line?
- How do you find the equation of a line?



#### Examples

Find the slope of the line passing through the given points.

**1.** (-7,5), (4,-2)  $m = \frac{5 - (-2)}{-7 - 4} = \frac{7}{-11}$   $m = \frac{5 - 2}{3 - 3} = \frac{3}{0} = \text{undefined}$   $m = \frac{5 - 5}{5 - (-4)} = \frac{0}{9} = 0$ Vertical line
Horizontal line

| Different Forms of Linear Equations |                                                                                                                                                                                                          |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Slope-intercept Form                | <ul> <li>A linear equation written in the form y = mx + b or f(x) = mx + b</li> <li>m is the slope</li> <li>b is the y-intercept.</li> <li>Best form for graphing.</li> </ul>                            |  |
| Standard form                       | A linear equation written in the form $Ax + By = C$ ,<br>• A, B and C are integers<br>• A is positive<br>• m is $\frac{-A}{B}$                                                                           |  |
| Point-slope Form                    | <ul> <li>A linear equation written in the form (y - y<sub>1</sub>) = m(x - x<sub>1</sub>),</li> <li><i>m</i> is the slope</li> <li>(x<sub>1</sub>, y<sub>1</sub>) is a coordinate on the line</li> </ul> |  |
| Vertical Line                       | x = a where a is the x-intercept<br>Vertical lines have undefined or no slope                                                                                                                            |  |
| Horizontal Line                     | y = b where b is the y-intercept<br>Horizontal lines have zero slope                                                                                                                                     |  |

### Examples

**4.** Find the equation in *standard form* of the line.



**5.** Graph the line 3x + 2y = 6.



$$2y = -3x + 6$$
$$y = \frac{-3}{2} + 3$$

**6.** Given the equation 3x + 2y = 6, find the slope, if it exists.

```
-\frac{3}{2}
```

**8.** Find the equation of the line with slope  $\frac{2}{3}$  and *y*-intercept 8. Write the equation in *standard form.* 

$$y = \frac{2}{3}x + 8$$
$$-3\left(-\frac{2}{3}x + y = 8\right)$$
$$2x - 3y = -24$$

10. Sketch a graph of the line that contains the point (0, 3) and has slope -3. Then write the equation of the line in the slope intercept form.



7. Given the equation, y = -3, find the slope, if it exists.



9. Write the equation of the line that passes through point (0, 1) with slope  $\frac{3}{5}$ . Give your answer in the *slope-intercept form*.

$$y = \frac{3}{5}x + 1$$

11. Write the equation of the line passing through (-4, -7) and (3, 0). Write your answer in the slope-intercept form.

$$m = \frac{-7 - 0}{-4 - 3} = \frac{-7}{-7} = 1$$
  
y = 1(x - 3)  
y = x - 3

| Parallel and Perpendicular Lines                                                                                                                          |                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parallel LinesParallel lines have equal slopes<br>Examples: $m = 2$ and $m_{\parallel} = \frac{2}{m}$ $m = \frac{3}{4}$ and $m_{\parallel} = \frac{3}{4}$ |                                                                                                                                                                                                       |
| Perpendicular Lines                                                                                                                                       | Perpendicular Lines have opposite reciprocal slopes (flip the fraction and change the sign)<br>Examples: $m = 2$ and $m_{\perp} = \frac{-1/2}{2}$<br>$m = \frac{3}{4}$ and $m_{\perp} = \frac{-4}{3}$ |

**12.** Write an equation of the line passing through (-4, -7), and *parallel* to y = 2x + 5. Write your answer in *standard form*.

$$y+7 = 2(x+4)$$
  
y+7 = x+8  
y = 2x+1  
-2x + y = 1  
-1(-2x + y = 1)  
2x - y = -1

**13.** Write an equation of the line passing through (-8, -3), and *perpendicular* to

 $y = \frac{1}{4}x + 2$ . Write your answer in standard form.

$$y+3 = -4(x+8)$$
  
y+3 = -4x-32  
y = -4x-35  
4x+y = -35

# 5.4 Linear Equations and Models

### Essential Question(s):

• How do you find the line of best fit?

| Mathematical Model                     | Mathematical representation (an equation/graph) of a real-world problem                                                       |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Linearly related variables             | Variables related by a linear equation                                                                                        |
| Rate of change                         | The <mark>slope</mark> of a linear equation                                                                                   |
| Regression analysis<br>(Curve fitting) | The process of finding a function to model a set of data points                                                               |
| Scatter Plot                           | The graph of the points in a data set                                                                                         |
| Regression line                        | The <mark>line of best fit</mark> for a set of data points<br>Sometimes called the <mark>Least-squares regression line</mark> |
| Interpolation                          | Using the regression line to approximate points located within the range of the data set                                      |
| Extrapolation                          | Using the regression line to approximate points located <mark>outside</mark> of the range of the data set                     |

### Use the following to answer questions 1-2:

The Number Two Plumbing Co. charges \$35 per hour plus a fixed service call charge of \$45.

 Write an equation that will allow you to compute the total bill for any number of hours, *x*, that it takes to complete a job.



**2.** If the bill comes to \$120.25, how many hours did the job take?



#### Use the following to answer questions 3-6:

A driver going down a straight highway is traveling at 70 ft/sec on cruise control when he begins accelerating at a rate of 4.2 ft/sec<sup>2</sup>. The velocity of the car in ft/sec is given by the function V = 4.2t + 70, where t is in seconds.

| <ol> <li>Interpret the meaning of the slope of this model.</li> <li>Every second the velocity is increasing by 4.2 ft/sec.</li> </ol>                                       | <ul> <li>4. What is the effect of a 1 second increase in time traveled?</li> <li>The velocity increases by 4.2 ft/sec.</li> </ul>                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>5. Determine the velocity of the car after 10.4 seconds.</li> <li>V = 4.2(10.4) + 70</li> <li>V = 43.68 + 70</li> <li>V = 113.68</li> <li>113.68 ft/sec</li> </ul> | <ul> <li>6. If the car is traveling at 100 ft/sec, for how long did it accelerate? (Round to the nearest tenth of a second.)</li> <li>100 = 4.2t + 70<br/>30 = 4.2t<br/>7.1 = t<br/>7.1 seconds</li> </ul> |



Use the following ordered pairs to answer questions 7-10:

(4, 14), (1, 6), (3, 9), (2, 9), (5, 17), (7, 20), (6, 16)

7. Find the linear regression for the data. (Round all values to the nearest hundredth.)

y = 2.28x + 3.85

8. Plot the data and the model on the same axes.



**9.** Use the model to estimate y when x = 3.5.

| y = 2.28(3.5) + 3.85 |
|----------------------|
| y = 11.83            |

**10.** Use the model to estimate *y* when x = 20.

y = 2.28(20) + 3.85y = 49.45