\qquad

4.1 Complex Numbers

Essential Question(s):

- How do you add, subtract, multiply, and divide complex numbers?

Vocabulary:

Standard Form of a Complex Number	$a+b i$
Zero	$0=0+0 i$
Conjugate	$a-b i$

Anatomy of a Complex Number:

Properties of Equality and Basic Operations:

Equality	$a+b i=c+d i$ iff $a=c$ and $b=d$ Set reals=reals \& imaginaries=imaginaries
Addition	$(a+b i)+(c+d i)=(a+c)+(b+d) i$ Add reals to reals \& imaginaries to imaginaries Multiplication $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$ FOIL
Additive Identity	$0+0 i$

Examples:

1. For the complex number $4-2 i$, find...
a. the real part 4
b. the imaginary part $-2 i$
c. the conjugate $4+2 i$
2. Add. Write the result in standard form.

$$
\begin{gathered}
(10-10 i)+(1+7 i) \\
11-3 i
\end{gathered}
$$

4. Multiply. Write the result in standard form.

$$
\begin{gathered}
(5-i)(4+3 i) \\
23+11 i
\end{gathered}
$$

6. Evaluate. Write your answer in standard form.

$$
\begin{gathered}
\sqrt{5} \cdot \sqrt{-80} \\
\sqrt{5} \cdot 4 i \sqrt{5} \\
4 i(5) \\
20 i
\end{gathered}
$$

7. Divide. Write your answer in standard form.

$$
\frac{1+7 i}{2 i}
$$

$$
\begin{gathered}
\left(\frac{1+7 i}{2 i}\right)\left(\frac{i}{i}\right) \\
\frac{1 i+7 i^{2}}{2 i^{2}} \\
\frac{-7+i}{-2} \\
\frac{7}{2}-\frac{i}{2}
\end{gathered}
$$

8. Divide and write your answer in standard form.

$$
\frac{-2+4 i}{1+3 i}
$$

$$
\begin{gathered}
\left(\frac{-2+4 i}{1+3 i}\right)\left(\frac{1-3 i}{1-3 i}\right) \\
\frac{-2+6 i+4 i-12 i^{2}}{1-9 i^{2}} \\
\frac{10+10 i}{10} \\
1+i
\end{gathered}
$$

9. Solve for x and y.

$$
\begin{aligned}
& (x+4)+(y-4) i=2+3 i \\
&
\end{aligned}
$$

10. Solve for x and y.

$$
\begin{aligned}
& \frac{(4+x)+(y+3) i}{2-i}=3+i \\
& (4+x)+(y+3) i=(3+i)(2-i) \\
& (4+x)+(y+3) i=6-3 i+2 i-i^{2} \\
& (4+x)+(y+3) i=7-1 i
\end{aligned}
$$

\[

\]

4.2 Quadratic Equations and Applications

Essential Question(s):

- What are the ways to solve quadratic equations?
- How do you solve quadratic word problems?

Vocabulary:

Standard Form of a Quadratic Equation	$a x^{2}+b x+c=0$
Real root	a real number solution of an equation
Imaginary root	an imaginary number solution of an equation

Methods for solving quadratic equations:

I. Using Factoring and the Zero Property

Zero Property	If m and n are complex numbers, $m n=0$ iff $m=0, n=0$, or both

Examples: Solve by factoring.

1. $4 x^{2}-20 x=-25$

$$
\begin{aligned}
4 x^{2}-20 x+25 & =0 \\
(2 x-5)^{2} & =0 \\
x & =\frac{5}{2}
\end{aligned}
$$

2. $7 x^{2}-6=-19 x$

$$
\begin{aligned}
& 7 x^{2}+19 x-6=0 \\
& (7 x-2)(x+3)=0 \\
& x=\frac{2}{7},-3
\end{aligned}
$$

II. Using the Square Root Property

Square Root Property	If $A^{2}=C$, then $A= \pm \sqrt{C}$

Examples: Solve using the square root property.
3. $(x-4)^{2}=100$

$$
\begin{aligned}
x-4 & = \pm 10 \\
x & =-6,14
\end{aligned}
$$

4. $(x-3)^{2}-7=0$

$$
\begin{aligned}
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

III. Completing the Square:

Steps to Solve

1. Transform the equation so that the constant term c is alone on the right side
2. If a is not equal to 1 , then divide both sides by a.
3. Add $\left(\frac{b}{2}\right)^{2}$ to BOTH sides.
4. Factor the left side.
5. Use the square root property
6. Simplify.

Examples: Solve by completing the square.
5. $x^{2}-6 x-2=0$
6. $x^{2}+2 x-8=0$
$x^{2}-6 x=2$
$x^{2}-6 x+9=2+9$

$$
\begin{aligned}
(x-3)^{2} & =11 \\
x-3 & = \pm \sqrt{11} \\
x & =3 \pm \sqrt{11}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 x+1 & =8+1 \\
(x+1)^{2} & =9 \\
x+1 & = \pm \sqrt{9} \\
x & =-1 \pm 3 \\
x & =-4,2
\end{aligned}
$$

7. $x^{2}+x+10=0$
$x^{2}+x+\frac{1}{4}=-10+\frac{1}{4}$
$\left(x+\frac{1}{2}\right)^{2}=\frac{-39}{4}$
$x+\frac{1}{2}= \pm \frac{\sqrt{-39}}{2}$
$x=-\frac{1}{2} \pm \frac{-\sqrt{39}}{2}$
8. $4 x^{2}+2 x-3=0$

$$
\begin{aligned}
x^{2}+\frac{1}{2} x-\frac{3}{4} & =0 \\
x^{2}+\frac{1}{2} x & =\frac{3}{4} \\
x^{2}+\frac{1}{2} x+\frac{1}{16} & =\frac{3}{4}+\frac{1}{16} \\
\left(x+\frac{1}{4}\right)^{2} & =\frac{13}{16} \\
x+\frac{1}{4} & = \pm \frac{\sqrt{13}}{4} \\
x & =-\frac{1}{4} \pm \frac{\sqrt{13}}{4}
\end{aligned}
$$

IV. Using the Quadratic Formula:

Quadratic Formula	$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
	Equation must be in standard form
Discriminant	$b^{2}-4 a c$

The Discriminant

Value of the Discriminant:	Number of Roots:	Graphical Representation:
$b^{2}-4 a c>0$ Discriminant is positive.	Two Real Roots - If the discriminant is a perfect $\underline{\text { square }} \rightarrow$ the roots are rational If the discriminant is not a perfect square \rightarrow the roots are irrational	 Two x-intercepts
$b^{2}-4 a c=0$ Discriminant is zero.	One Real Root	 One x-intercept
$b^{2}-4 a c<0$ Discriminant is negative.	Two Imaginary Conjugate Roots	 No x-intercept

Examples: Solve using the quadratic formula.

$$
\text { 7. } \begin{aligned}
2 x^{2}+6 x & =11 \\
2 x^{2}+6 x-11 & =0 \\
x & =\frac{-6 \pm \sqrt{6^{2}-4(2)(-11)}}{2(2)} \\
& =\frac{-6 \pm \sqrt{124}}{4} \\
& =\frac{-6 \pm 2 \sqrt{31}}{4} \\
& =\frac{-3 \pm \sqrt{31}}{2}
\end{aligned}
$$

8. $x^{2}=-x-11$

$$
x^{2}=-x-11
$$

$$
x^{2}+x+11=0
$$

$$
x=\frac{-1 \pm \sqrt{1^{2}-4(1)(11)}}{2(1)}
$$

$$
=\frac{-1 \pm \sqrt{1-44}}{2}
$$

$$
=\frac{-1 \pm i \sqrt{43}}{2}
$$

Find the number of real roots of each quadratic equation.
9. $3 x^{2}-6 x+5=0$
10. $3 x^{2}-6 x+1=0$
11. $3 x^{2}-6 x+3=0$
$3 x^{2}-6 x+1=0$
$(-6)^{2}-4(3)(1)$
36-12
$24>0$
24 is not a perfect square
two unequal real irrational roots
$3 x^{2}-6 x+3=0$
$(-6)^{2}-4(3)(3)$
$36-36=0$
one real double root

V. Application Examples:

12. The product of two consecutive positive even integers is 168 . Find the integers.

$$
\begin{aligned}
x(x+2) & =168 \\
x^{2}+2 x-168 & =0 \\
(x+14)(x-12) & =0 \\
x & =>14,12 \\
x & =12 \\
x+2 & =14
\end{aligned}
$$

13. One positive number is 4 less than twice another positive number and their product is 96 . Set-up an algebraic equation and solve it to find the two numbers.

$$
\begin{array}{rlr}
x \cdot(2 x-4) & =96 & \\
2 x^{2}-4 x-96 & =0 & x=8 \\
x^{2}-2 x-48 & =0 & 2 x-4=12 \\
(x+6)(x-8) & =0 & \\
x & =>6,8 &
\end{array}
$$

14. Two technicians can complete a mailing in 3 hours when working together. Alone, one can complete the mailing 2 hours faster than the other. How long will it take each person to complete the mailing alone? Compute the answers to two decimal places.

	WR	T	WD
Tech 1	$\frac{1}{x}$	3	$\frac{3}{x}$
Tech 2	$\frac{1}{x+2}$	3	$\frac{3}{x+2}$

$$
\begin{aligned}
& \frac{3}{x}+\frac{3}{x+2}=1 \\
& 3(x+2)+3 x=x(x+2) \\
& 3 x+6+3 x=x^{2}+2 x \\
& 0=x^{2}-4 x-6 \\
& x=\frac{4 \pm \sqrt{16-4(-6)}}{2} \\
& x=\frac{4 \pm 6.32}{2} \\
& x=2 \pm 3.16 \\
& x=5.16,-1.16
\end{aligned}
$$

5.16 hours and 7.16 hours
15. A speedboat takes 3 hours longer to go 60 miles up a river than to return. If the boat cruises at 15 miles per hour in still water, what is the rate of the current?

	R	T	D
Upstream	$15-x$	$\mathrm{t}+3$	60
Downstream	$15+x$	t	60

$$
\begin{aligned}
& \begin{array}{l}
\text { Upstream: }(15-x)(t+3)=60 \quad \text { Downstream } \\
\qquad t=\frac{60}{15-x}-3 \\
\frac{60}{15-x}-3
\end{array}=\frac{60}{15+x}, ~ \begin{aligned}
60(15+x)-3(15+x)(15-x) & =60(15-x) \\
3 x^{2}+120 x-675 & =0 \\
x^{2}+40 x-225 & =0 \\
(x+45)(x-5) & =0 \\
x & =-45,5 \\
x & =5 \mathrm{mi} / \mathrm{h}
\end{aligned} \\
& \text { Downstream: }(15+x) t=60 \\
& \begin{array}{l}
\text { Upstream: }(15-x)(t+3)=60 \quad \text { Downstream } \\
\qquad t=\frac{60}{15-x}-3 \\
\frac{60}{15-x}-3
\end{array}=\frac{60}{15+x}, ~ \begin{aligned}
60(15+x)-3(15+x)(15-x) & =60(15-x) \\
3 x^{2}+120 x-675 & =0 \\
x^{2}+40 x-225 & =0 \\
(x+45)(x-5) & =0 \\
x & =-45,5 \\
x & =5 \mathrm{mi} / \mathrm{h}
\end{aligned}
\end{aligned}
$$

4.3 Special Equation Solving Techniques

Essential Question(s):

- How do you solve equations involving radicals and absolute value?
- How do you solve equations of the quadratic type?

I. Equations involving Radicals

When squaring both sides of an equation, extraneous solutions are introduced. You must check all possible solutions in the original equation to eliminate the extraneous solutions.

Examples:

1. Solve.

$$
\begin{aligned}
\sqrt{x-1} & =x-3 \\
(\sqrt{x-1})^{2} & =(x-3)^{2} \\
x-1 & =x^{2}-6 x+9 \\
0 & =x^{2}-7 x+10 \\
0 & =(x-5)(x-2) \\
x & =5,
\end{aligned}
$$

2. Solve.

$$
\begin{aligned}
& \sqrt{3 x+7}-\sqrt{2 x-3}=2 \\
& \sqrt{3 x+7}=\sqrt{2 x-3}+2 \\
&(\sqrt{3 x+7})^{2}=(\sqrt{2 x-3}+2)^{2} \\
& 3 x+7=2 x-3+4 \sqrt{2 x-3}+4 \\
& x+6=4 \sqrt{2 x-3} \\
&(x+6)^{2}=(4 \sqrt{2 x-3})^{2} \\
& x^{2}+12 x+36=16(2 x-3) \\
& x^{2}-20 x+84=0 \\
&(x-6)(x-14)=0 \\
& x=6,14
\end{aligned}
$$

II. Equations involving Absolute Value

Squaring both sides eliminates the need to consider both cases. However, you must still check all possible solutions in the original equation to eliminate the extraneous solutions.
This technique only applies to equations. It will NOT work properly with inequalities.

Examples:

3. Solve.

$$
\begin{aligned}
|x+5| & =1-3 x \\
|x+5|^{2} & =(1-3 x)^{2} \\
x^{2}+10 x+25 & =1-6 x+9 x^{2} \\
0 & =8 x^{2}-16 x-24 \\
0 & =x^{2}-2 x-3 \\
0 & =(x-3)(x+1) \\
x & =\not x,-1
\end{aligned}
$$

4. Solve.

$$
\begin{aligned}
&|6 x-1|=x-6 \\
&|6 x-1|^{2}=(x-6)^{2} \\
& 36 x^{2}-12 x+1=x^{2}-12 x+36 \\
& 35 x^{2}=35 \\
& x^{2}=1 \\
& x=\not \subset, X \\
& \varnothing
\end{aligned}
$$

III. Equations involving the Quadratic Form

Use u-substitution.

Examples:

5. Solve.

$$
\begin{aligned}
& 5 x^{\frac{2}{3}}-13 x^{\frac{1}{3}}-6=0 \\
& \text { Let } u=x^{\frac{1}{3}} \\
& 5 u^{2}-13 u-6=0 \\
&(5 u+2)(u-3)=0 \\
& u=-\frac{2}{5}, 3 \\
& x=u^{3} \\
& x=-\frac{8}{125}, 27
\end{aligned}
$$

6. Solve.

$$
\begin{aligned}
x+5 \sqrt{x}-24 & =0 \\
\text { Let } u & =x^{\frac{1}{2}} \\
u^{2}+5 u-24 & =0 \\
(u+8)(u-3) & =0 \\
u & =-8,3 \\
x & =u^{2} \\
x & =\varnothing 4,9
\end{aligned}
$$

