3.1 Linear Equations and Applications

Essential Question(s):

- How do you solve linear equations?
- How do you solve linear word problems?

Vocabulary:

Algebraic Equation	Formed by placing an equal sign between two algebraic expressions Can be <mark>solved</mark>
Algebraic Expression	Part of an algebraic equation. Can only be <mark>simplified.</mark> Caution: Methods for solving and methods for simplifying are not always the same.
Domain (replacement set)	The set of numbers that are permitted to replace the variable The set of <i>x</i> -values
Solution or Root	Each element in the domain of the variable that makes the equation true
Solving an Equation	Finding the complete solution set for the equation
Standard Form of a Linear Equation	$Ax + By = C$, where $A \neq 0$

Properties of Equality: If a, b, and c are any real numbers and a = b, then

Addition Property of Equality	a + c = b + c Add the same value to BOTH sides of an equation
Subtraction Property of Equality	a-c=b-c Subtract the same value from BOTH sides of an equation
Multiplication Property of Equality	ca = cb Multiply the same value on BOTH sides of an equation
Division Property of Equality	$\frac{a}{c} = \frac{b}{c}, c \neq 0$ Divide by the same value BOTH sides of an equation
Substitution Property	You may <mark>replace</mark> an expression with an equivalent expression without changing its value. "plugging into" an equation

Examples:

1. Solve. 4(x+5) + 7x = 8x + 11

$$4x + 20 + 7x = 8x + 11$$
$$11x + 20 = 8x + 11$$
$$3x = -9$$
$$x = -3$$

2. Solve.
$$\frac{4x-3}{5} - 6 = \frac{x}{2}$$
$$10\left(\frac{4x-3}{5} - 6\right) = 10\left(\frac{x}{2}\right)$$
$$2(4x-3) - 60 = 5x$$
$$8x - 6 - 60 = 5x$$
$$8x - 66 = 5x$$
$$3x = 66$$
$$x = 22$$

3. Solve for *r*. m = n + (p-5)r

$$m = n + (p-5)$$
$$m-n = (p-5)r$$
$$\frac{m-n}{p-5} = r$$

4. Solve for s.
$$\frac{1}{r} = \frac{1}{s} + \frac{1}{t}$$
$$\frac{1}{r} = \frac{1}{s} + \frac{1}{t}$$
$$\frac{1}{r} - \frac{1}{t} = \frac{1}{s}$$
$$\frac{t - r}{rt} = \frac{1}{s}$$
$$\frac{rt}{t - r} = s$$

5. Find three consecutive odd integers such that 3 times their sum is 5 more than 8 times the middle one.

$$3[x + (x + 2) + (x + 4)] = 8(x + 2) + 5$$

$$3[3x + 6] = 8x + 16 + 5$$

$$9x + 18 = 8x + 21$$

$$x + 18 = 21$$

$$x = 3$$

$$3,5,7$$

6. Find three consecutive odd integers such that the sum of the second, twice the first, and three times the third is 152.

$$2x + (x + 2) + 3(x + 4) = 152$$

$$6x + 14 = 152$$

$$6x = 138$$

$$x = 23$$

$$23, 25, 27$$

6. The length of a rectangle is 3 ft less than 2 times its width. If the perimeter of the rectangle is 48 ft, find the dimensions of the rectangle.

7. How much pure antifreeze must be added to 12 gallons of 20% antifreeze to make a 40% antifreeze solution?

	# of Gal	%	Total
	in or ea.	Antifreeze	Antifreeze
Orig. Sol.	<mark>12</mark>	<mark>20</mark>	<mark>240</mark>
Antifreeze	×	<mark>100</mark>	<mark>100x</mark>
New Sol.	<mark>12 + x</mark>	<mark>40</mark>	<mark>40(12+x)</mark>

240+100x = 40(12+x) 240+100x = 480+40x 60x = 240x = 4 gal

8. One computer printer can print a company's mailing labels in 40 minutes. A second printer would take 60 minutes to print the labels. How long would it take the two printers, operating together, to print the labels?

	WR T		WD
Printer 1	$\frac{1}{40}$	×	$\frac{x}{40}$
Printer 2	<u>1</u> 60	×	$\frac{x}{60}$

$$\frac{x}{40} + \frac{x}{60} = 1$$

$$3x + 2x = 120$$

$$5x = 120$$

$$x = 24 \text{ min}$$

9. Bill's motorboat can travel 30 mi/h in still water. If the boat can travel 9 miles downstream in the *same time* it takes to travel 1 miles upstream, what is the rate of the river's current?

		R	T.	D	
	Upstream	<mark>30 – x</mark>	t	1	
	Downstream	<mark>30 + x</mark>	<mark>t</mark>	<mark>9</mark>	
<mark>Downst</mark>	Downstream: $(30+x)t = 9$ Upstream: $(30-x)t = 1$				
	$t = -\frac{1}{3}$	$\frac{9}{80+x}$			$t = \frac{1}{30 - x}$
			$\frac{9}{30+x} =$	$\frac{1}{30-x}$)
			270 - 9x = 240 = 200	$\frac{30+x}{10x}$	
			24 mi / h =	x	

3.2 Linear Inequalities

Essential Question(s):

• How do you solve linear inequalities?

Vocabulary:

	Inequality	Symbol	S
>	"greater than"	<	"less than"
2	"greater than or equal to"	\leq	"less than or equal to"

Trichotomy Property	For any two real numbers a and b, $a < b$, or $a > b$, or $a = b$
Interval	 The subset of real numbers that is the solution to an inequality. [] denotes a closed interval (endpoints included in the interval). Use closed circles when graphing on the number line. (] or [) denote a half-open interval () denotes an open interval (endpoints not included in the interval). Use open circles when graphing on the number line.
$A \cup B$	The <mark>union</mark> of sets A <mark>"OR"</mark> B. Combines <mark>all of set A with all of set B</mark> .
$A \cap B$	The <u>intersection</u> of sets A <mark>"AND" </mark> B. Combines what is <mark>in common</mark> in sets A and B
Solution Set of an Inequality	The set of all values of the variable that <mark>make the inequality a true</mark> statement
Solving an inequality	Finding the solution set of the inequality

Inequality Properties: If a, b, and c are any real numbers,

Transitive Property	If <i>a</i> < <i>b</i> and <i>b</i> < <i>c</i> , then <i>a</i> < <i>c</i>
Addition Property	If <i>a < b,</i> then <i>a + c < b + c</i> Add the same value to <mark>BOTH sides of an inequality</mark>
Subtraction Property	If <i>a < b,</i> then <i>a – c < b – c</i> Subtract the same value from <mark>BOTH sides of an inequality</mark>
Multiplication Property	If <i>a</i> < <i>b</i> and <i>c</i> is positive, then <i>ca</i> < <i>cb</i> Multiplying the same POSITIVE value on BOTH sides of an inequality will NOT change the inequality. If <i>a</i> < <i>b</i> and <i>c</i> is negative, then <i>ca</i> > <i>cb</i> Multiplying the same NEGATIVE value on BOTH sides of an inequality WILL REVERSE the inequality symbol.
Division Property	If $a < b$ and c is positive, then $\frac{a}{c} < \frac{b}{c}$ Dividing the same POSITIVE value on BOTH sides of an inequality will NOT change the inequality. If $a < b$ and c is negative, then $\frac{a}{c} > \frac{b}{c}$ Dividing the same NEGATIVE value on BOTH sides of an inequality WILL REVERSE the inequality symbol.

Examples:

1. Rewrite in *inequality notation* and graph on a real number line.

2. Rewrite in *interval notation* and graph on a real number line.

3. Write in *interval notation* and *inequality* notation.

5. Graph and write as a single interval, if possible.

[5, 6]

b. [−3, 6) ∪ [5, 8)

[-3, 8]

4. Fill in the blanks with > or < to make the resulting statement true.

6. For what real numbers x does the expression represent a real number?

7. Solve and graph.

8. Solve and graph.

9. If *F* is the temperature in degrees Fahrenheit, then the temperature *C* in degrees Celsius is given by the formula $C = \frac{5}{9}(F-32)$. For what Fahrenheit temperatures will the Celsius temperature be between –5 and 35, inclusive?

$$-5 \le C \le 35$$
$$-5 \le \frac{5}{9}(F - 32) \le 35$$
$$\left(\frac{9}{5}\right)\left(-5\right) \le \left(\frac{9}{5}\right)\left(\frac{5}{9}(F - 32)\right) \le \left(\frac{9}{5}\right)\left(35\right)$$
$$-9 \le F - 32 \le 63$$
$$23 \le F \le 95$$

3.3 Absolute Value in Equations and Inequalities

Essential Question(s):

- How do you solve absolute value equations?
- How do you solve absolute value inequalities?

Steps to Solve

Solutions should ALWAYS be

graphed as well as

written in inequality AND

interval notation

- **1.** <u>Isolate</u> the absolute value.
- **2.** Write absolute value on <u>left</u> side.
- **3.** Determine if <u>"and"</u> or <u>"or."</u>
 - <u>And</u>: <, ≤
 - <u>Or</u> : =, >, ≥
- 4. Set up 2 equations.
 - <u>Drop</u> absolute value & solve.
 - <u>Drop</u> absolute value, <u>flip</u> the inequality, take the <u>opposite</u> and solve.

Examples:

	Equation/Inequality	Inequality Notation	Interval Notation	Graph
Equality	x = 1	x = 1 or $x = -1$	{-1,1}	-1 1
Less Than	x < 1	x < 1 and $x > -1$	(-1,1)	$\leftarrow \rightarrow \rightarrow -1 1$
Greater Than	x > 1	x > 1 or x < -1	$(-\infty,-1)\cup(1,\infty)$	-1 1

Notes:

• If |x| = negative number or |x| <0 or negative number, there is <u>no</u> solution.

Translation: absolute values cannot be negative

- If |x| = 0 or $|x| \le 0$, there is <u>one</u> solution.
- If |x| > negative number or $|x| \ge 0$, the solution is all real numbers. Translation: absolute values are **always** positive

Examples:

Solve. How many solutions does each problem yield?

Solve. Solutions should be graphed as well as written in *inequality* and *interval notations*.

4. $ 4x+1 $	=9
4x + 1 = 9	or $4x + 1 = -9$
4x = 8	4x = -10
x = 2	x = -2.5

5. $|3x+3| \le 9$ $3x+3 \le 9$ and $3x+3 \ge -9$ $3x \le 6$ $3x \ge -12$ $x \le 2$ $x \ge -4$ $\{x: -4 \le x \le 2\}$ [-4,2]

6. $|3x-1| \ge 0$

 $(-\infty,\infty)$

8.
$$|4x-3| > 5$$

 $4x-3 > 5 \text{ or } 4x-3 < -5$
 $4x > 8$ $4x < -2$
 $x > 2$ $x < -\frac{1}{2}$
 $\left(-\infty, -\frac{1}{2}\right) \cup (2, \infty)$

9.	$\sqrt{\left(2x-1\right)^2}$	< 9	→	2 <i>x</i>	:-1	<9
2 <i>x</i>	-1 < 9 and	2x-1	1>-	-9		
2 <i>x</i>	:<10	2 <i>x</i> >	-8			
<i>x</i> <	< 5	<i>x</i> > -	-4			
{ <i>x</i>	:-4 < x < 5	}				
(-	4,5)					

10. Solve. |x + 10| = 2x + 1

Case 1: $x + 10 \ge 0$ (that is, $x \ge -10$)	Case 2: $x+10 < 0$ (that is, $x < -10$)
	-(x+10) = 2x+1
x+10 = 2x+1	-x - 10 = 2x + 1
-x = -9	-3x = 11
<i>x</i> = 9	$x = -\frac{11}{3}$

So,
$$x = 9$$