\qquad

3.1 Linear Equations and Applications

Essential Question(s):

- How do you solve linear equations?
- How do you solve linear word problems?

Vocabulary:

Algebraic Equation	Formed by placing an equal sign between two algebraic expressions Can be solved
Algebraic Expression	Part of an algebraic equation. Can only be simplified. Caution: Methods for solving and methods for simplifying are not always the same.
Domain (replacement set)	The set of numbers that are permitted to replace the variable The set of x-values
Solution or Root	Each element in the domain of the variable that makes the equation true
Solving an Equation	Finding the complete solution set for the equation
Standard Form of a	
Linear Equation	$A x+B y=C$, where $A \neq 0$

Properties of Equality: If a, b, and c are any real numbers and $a=b$, then

Addition Property of Equality	$a+c=b+c \quad$ Add the same value to BOTH sides of an equation
Subtraction Property of Equality	$a-c=b-c \quad$ Subtract the same value from BOTH sides of an equation
Multiplication Property of Equality	$c a=c b \quad$ Multiply the same value on BOTH sides of an equation
Division Property of Equality	$\frac{a}{c}=\frac{b}{c}, c \neq 0 \quad$ Divide by the same value BOTH sides of an equation
Substitution Property	You may replace an expression with an equivalent expression without changing its value. "plugging into" an equation

Examples:

1. Solve. $4(x+5)+7 x=8 x+11$
2. Solve. $\frac{4 x-3}{5}-6=\frac{x}{2}$

$$
\begin{aligned}
4 x+20+7 x & =8 x+11 \\
11 x+20 & =8 x+11 \\
3 x & =-9 \\
x & =-3
\end{aligned}
$$

$$
\begin{aligned}
10\left(\frac{4 x-3}{5}-6\right) & =10\left(\frac{x}{2}\right) \\
2(4 x-3)-60 & =5 x \\
8 x-6-60 & =5 x \\
8 x-66 & =5 x \\
3 x & =66 \\
x & =22
\end{aligned}
$$

3. Solve for r. $m=n+(p-5) r$

$$
\begin{aligned}
m & =n+(p-5) r \\
m-n & =(p-5) r \\
\frac{m-n}{p-5} & =r
\end{aligned}
$$

4. Solve for s. $\frac{1}{r}=\frac{1}{s}+\frac{1}{t}$

$$
\begin{array}{rl}
r & s \\
\frac{1}{r} & =\frac{1}{s}+\frac{1}{t} \\
\frac{1}{r}-\frac{1}{t} & =\frac{1}{s} \\
\frac{t-r}{r t} & =\frac{1}{s} \\
\frac{r t}{t-r} & =s
\end{array}
$$

5. Find three consecutive odd integers such that 3 times their sum is 5 more than 8 times the middle one.

$$
\begin{aligned}
& 3[x+(x+2)+(x+4)]=8(x+2)+5 \\
& 3[3 x+6]=8 x+16+5 \\
& 9 x+18=8 x+21 \\
& x+18=21 \\
& x=3 \\
& 3,5,7
\end{aligned}
$$

6. Find three consecutive odd integers such that the sum of the second, twice the first, and three times the third is 152 .

$$
\begin{aligned}
& 2 x+(x+2)+3(x+4)=152 \\
& 6 x+14=152 \\
& 6 x=138 \\
& x=23 \\
& 23,25,27
\end{aligned}
$$

6. The length of a rectangle is 3 ft less than 2 times its width. If the perimeter of the rectangle is 48 ft , find the dimensions of the rectangle.

$$
\begin{aligned}
w & =\text { width } \\
2 w-3 & =\text { length } \\
P & =48 \\
P & =2 l+2 w \\
48 & =2(2 w-3)+2 w \\
48 & =4 w-6+2 w \\
54 & =6 w \\
w & =9 \mathrm{ft} \\
2 w-3 & =15 \mathrm{ft}
\end{aligned}
$$

7. How much pure antifreeze must be added to 12 gallons of 20% antifreeze to make a 40% antifreeze solution?

	\# of Gal	$\%$ Antifreeze	Total Antifreeze
Orig. Sol.	12	20	240
Antifreeze	x	100	100 x
New Sol.	$12+\mathrm{x}$	40	$40(12+\mathrm{x})$

$$
\begin{aligned}
240+100 x & =40(12+x) \\
240+100 x & =480+40 x \\
60 x & =240 \\
x & =4 \mathrm{gal}
\end{aligned}
$$

8. One computer printer can print a company's mailing labels in 40 minutes. A second printer would take 60 minutes to print the labels. How long would it take the two printers, operating together, to print the labels?

	WR	T	WD
Printer 1	$\frac{1}{40}$	x	$\frac{x}{40}$
Printer 2	$\frac{1}{60}$	x	$\frac{x}{60}$

$$
\begin{aligned}
\frac{x}{40}+\frac{x}{60} & =1 \\
3 x+2 x & =120 \\
5 x & =120 \\
x & =24 \mathrm{~min}
\end{aligned}
$$

9. Bill's motorboat can travel $30 \mathrm{mi} / \mathrm{h}$ in still water. If the boat can travel 9 miles downstream in the same time it takes to travel 1 miles upstream, what is the rate of the river's current?

	R	T	D
Upstream	$30-x$	t	1
Downstream	$30+\mathrm{x}$	t	9

Downstream: $(30+x) t=9$

$$
\text { Upstream: }(30-x) t=1
$$

$$
t=\frac{9}{30+x}
$$

$$
t=\frac{1}{30-x}
$$

$$
\frac{9}{30+x}=\frac{1}{30-x}
$$

$$
270-9 x=30+x
$$

$$
240=10 x
$$

$$
24 \mathrm{mi} / \mathrm{h}=x
$$

3.2 Linear Inequalities

Essential Question(s):

- How do you solve linear inequalities?

Vocabulary:

	Inequality Symbols		
$>$	"greater than"	$<$	"less than"
\geq	"greater than or equal to"	\leq	"less than or equal to"

Trichotomy Property	For any two real numbers a and $\mathbf{b}, a<b$, or $a>b$, or $a=b$
Interval	The subset of real numbers that is the solution to an inequality. - [] denotes a closed interval (endpoints included in the interval). Use closed circles when graphing on the number line. - (] or [) denote a half-open interval - () denotes an open interval (endpoints not included in the interval). Use open circles when graphing on the number line.
$A \cup B$	The union of sets A "OR" B. Combines all of set A with all of set B.
$A \cap B$	The intersection of sets A "AND" B. Combines what is in common in sets A and B
Solution Set of an Inequality	The set of all values of the variable that make the inequality a true statement
Solving an inequality	Finding the solution set of the inequality

Inequality Properties: If a, b, and c are any real numbers,

Transitive Property	If $a<b$ and $b<c$, then $a<c$
Addition Property	If $a<b$, then $a+c<b+c$ Add the same value to BOTH sides of an inequality
Subtraction Property	If $a<b$, then $a-c<b-c$ Subtract the same value from BOTH sides of an inequality
Multiplication Property	If $a<b$ and c is positive, then $c a<c b$ Multiplying the same POSITIVE value on BOTH sides of an inequality will NOT change the inequality. If $a<b$ and c is negative, then $c a>c b$ Multiplying the same NEGATIVE value on BOTH sides of an inequality WILL REVERSE the inequality symbol.
Division Property	If $\boldsymbol{a}<\boldsymbol{b}$ and \boldsymbol{c} is positive, then $\frac{a}{c}<\frac{b}{c}$ Dividing the same POSITIVE value on BOTH sides of an inequality will NOT change the inequality. If $\boldsymbol{a}<\boldsymbol{b}$ and \boldsymbol{c} is negative, then $\frac{a}{c}>\frac{b}{c}$ Dividing the same NEGATIVE value on BOTH sides of an inequality WILL REVERSE the inequality symbol.

Examples:

1. Rewrite in inequality notation and graph on a real number line.

$$
(-4,4]
$$

$$
-4<x \leq 4
$$

3. Write in interval notation and inequality notation.

$(-1, \infty)$
$x>-1$
5. Graph and write as a single interval, if possible.
a. $[-3,6) \cap[5,8)$
$[5,6]$
b. $[-3,6) \cup[5,8)$
$[-3,8)$
2. Rewrite in interval notation and graph on a real number line.
$1 \leq x \leq 5$
[1, 5]

4. Fill in the blanks with > or < to make the resulting statement true.

$$
-4 \leq-2
$$

and

$$
-4-3 \leq-2-3
$$

6. For what real numbers x does the expression represent a real number?

$$
\begin{array}{r}
\sqrt{x-6} \\
x-6 \geq 0 \\
x \geq 6
\end{array}
$$

7. Solve and graph.

$$
\begin{aligned}
& 3 x-7 \geq x-5 \\
& 3 x-7 \geq x-5 \\
& 2 x \geq 2 \\
& x \geq 1 \\
& \\
& {[1, \infty) }
\end{aligned}
$$

8. Solve and graph.

$$
\begin{aligned}
\frac{3 y}{7}+\frac{y}{14} & <-1 \\
14\left(\frac{3 y}{7}+\frac{y}{14}\right) & <14(-1) \\
6 y+y & <-14 \\
7 y & <-14 \\
y & <-2
\end{aligned}
$$

$$
(-\infty,-2)
$$

9. If F is the temperature in degrees Fahrenheit, then the temperature C in degrees Celsius is given by the formula $C=\frac{5}{9}(F-32)$. For what Fahrenheit temperatures will the Celsius temperature be between -5 and 35 , inclusive?

$$
\begin{aligned}
&-5 \leq C \\
& \leq 35 \\
&-5 \leq \frac{5}{9}(F-32) \leq 35 \\
&\left(\frac{9}{5}\right)(-5) \leq\left(\frac{9}{5}\right)\left(\frac{5}{9}(F-32)\right) \leq\left(\frac{9}{5}\right)(35) \\
&-9 \leq F-32 \leq 63 \\
& 23 \leq F \leq 95
\end{aligned}
$$

3.3 Absolute Value in Equations and Inequalities

Essential Question(s):

- How do you solve absolute value equations?
- How do you solve absolute value inequalities?

Steps to Solve

1. Isolate the absolute value.
2. Write absolute value on left side.
3. Determine if "and" or "or."

- And : $<, \leq$
- $\underline{\mathrm{Or}}:=,>, \geq$

- Drop absolute value \& solve.

4. Set up 2 equations.

- Drop absolute value, flip the inequality, take the opposite and solve.

Examples:

	Equation/Inequality	Inequality Notation	Interval Notation	Graph
Equality	$\|x\|=1$	$x=1$ or $x=-1$	$\{-1,1\}$	\longleftrightarrow
Less Than	$\|x\|<1$	$x<1$ and $x>-1$	$(-1,1)$	\longleftrightarrow
Greater Than	$\|x\|>1$	$x>1$ or $x<-1$	$(-\infty,-1) \cup(1, \infty)$	\longleftrightarrow

Notes:

- If $|x|=$ negative number or $|x|<0$ or negative number, there is no solution.

Translation: absolute values cannot be negative

- If $|x|=0$ or $|x| \leq 0$, there is one solution.
- If $|x|>$ negative number or $|x| \geq 0$, the solution is all real numbers.

Translation: absolute values are always positive

Examples:

Solve. How many solutions does each problem yield?

1. $|y|=7$
$\begin{aligned} & y=7 \text { or } y=-7 \\ & \{-7,7\}\end{aligned}$
2 sol's
2. $|w|=0$
$w=0$ or $w=0$
1 sol
3. $|z|=-12$
No solution

Solve. Solutions should be graphed as well as written in inequality and interval notations.
4. $|4 x+1|=9$
$4 x+1=9$ or $4 x+1=-9$
$4 x=8$
$4 x=-10$
$x=2 \quad x=-2.5$
5. $|3 x+3| \leq 9$
$3 x+3 \leq 9$ and $3 x+3 \geq-9$
$3 x \leq 6 \quad 3 x \geq-12$
$x \leq 2 \quad x \geq-4$
$\{x:-4 \leq x \leq 2\}$
$[-4,2]$

6. $|3 x-1| \geq 0$
$(-\infty, \infty)$
7. $|3 x-1|>0$
$3 x-1>0$ or $3 x-1<0$
$3 x>1 \quad 3 x<1$
$x>\frac{1}{3} \quad x<\frac{1}{3}$
$\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \infty\right)$

8. $|4 x-3|>5$
$4 x-3>5$ or $4 x-3<-5$
$4 x>8 \quad 4 x<-2$
$x>2 \quad x<-\frac{1}{2}$
$\left(-\infty,-\frac{1}{2}\right) \cup(2, \infty)$
9. $\sqrt{(2 x-1)^{2}}<9 \rightarrow|2 x-1|<9$ $2 x-1<9$ and $2 x-1>-9$
$2 x<10 \quad 2 x>-8$
$x<5 \quad x>-4$
$\{x:-4<x<5\}$

10. Solve. $|x+10|=2 x+1$

Case 1: $x+10 \geq 0$ (that is, $x \geq-10$)

$$
\begin{aligned}
x+10 & =2 x+1 \\
-x & =-9 \\
x & =9
\end{aligned}
$$

Case 2: $x+10<0$ (that is, $x<-10$)

$$
\begin{aligned}
-(x+10) & =2 x+1 \\
-x-10 & =2 x+1 \\
-3 x & =11 \\
x & =-\frac{11}{3}
\end{aligned}
$$

So, $x=9$

