\qquad

1.1 Algebra and Real Numbers

Essential Question(s):

- How do you categorize real numbers?
- How do you add, subtract, multiply, and divide real numbers?

Set	A collection of objects
Element (Member)	Each object in a set Ex. $3 \in\{1,2,3\}$ " 3 is an element of the set"
Finite Set	Elements in the set can be counted
Infinite Set	Elements in the set can be counted without end
Empty (Null) Set	The set that contains no elements. Notation: \square Note: The empty set is a subset of any set.
Listing (Roster) Method	Set notation that lists the elements of a set. $\text { Ex: } A=\{1,2,3,4\}$
Set Builder (Rule) Notation	Set notation that uses a rule to describe the members of the set. Ex: $\{x \mid x>5\}$ " x such that x is greater than 5 "
Subset	A set of elements that are members of a larger set Ex. $A \subset B$ "set A is a subset of set B "
Equal Sets	Two or more sets having exactly the same elements
Intersection of Sets	The set of elements common to both sets A AND B \rightarrow Think overlapping sets Notation: $A \cap B$ "A intersect B"
Union of Sets	The set of elements that are members of set A OR of set B OR of both sets \rightarrow Think all of set A with all of set B Notation: $A \cup B$ "A union $\mathrm{B} "$

Important Symbols					
\in	"element of"	\subset	"subset of"	\varnothing	
"null set"					
I	"such that"	\cap	"intersection"	\cup	
"union"					

Examples:

1. List all possible subsets of $A=\{1,2,3\}$
$\{1,2,3\}$
\{1\}
$\{1,2\}$
$\{1,3\}$
$\{2,3\}$
\{2\}
\{3\}
\varnothing
2. Determine whether each of the following is true or false.
a. $\mathbf{F} \quad 2 \notin\{1,2,3\}$
b. \qquad $\{y, x, z\} \subset\{x, y, z\}$
c. \qquad $\{y, x, z\}=\{x, y, z\}$
d. $\quad \mathrm{F}$ $\varnothing \in\{x, y, z\} \quad$ The null set is a subset of every set, not an element.
e. \qquad $\{w, x, y, z\} \subset\{x, y, z\}$
3. Write each of the following sets using set builder notation.
a. $\{2,4,6,8,10\}$ $\{x \mid x$ an even integer between 2 and 10 inclusive $\}$
b. $\{1,2,3,4,5\}$
$\{x \mid x$ an integer between 1 and 5 inclusive $\}$
4. Write the following set using the listing method.
a. $\{x \mid x$ is a letter in the word ALGEBRA $\}$ $\{A, L, G, E, B, R\}$
b. $\{x \mid x$ is an even integer between 6 and 12 inclusive $\}$
$\{6,8,10,12\}$
5. Given set $A=\{1,2,3,4,5,6\}$ and set $B=\{2,4,6,8\}$, find the following:
a. $A \cap B$
$\{2,4,6\}$
b. $A \cup B$
$\{1,2,3,4,5,6,8\}$
$\left.\begin{array}{|c|c|}\hline \text { Natural Numbers } & \begin{array}{c}\text { The set of positive counting numbers } \\ \{1,2,3, \ldots\}\end{array} \\ \hline \text { Whole Numbers } & \begin{array}{c}\text { The set of natural numbers AND zero } \\ \{0,1,2,3, \ldots\}\end{array} \\ \hline \text { Integers } & \begin{array}{c}\text { The set of whole numbers AND their opposites } \\ \{\ldots,-3,-2,-1,0,1,2,3, \ldots\}\end{array} \\ \hline \text { Rational Numbers } & \begin{array}{r}\text { The set of numbers than can be written as a quotient of two integers. } \\ \text { Rational means fractional (decimals that terminate or repeat) }\end{array} \\ \text { Ex. }-\frac{5}{3}, \frac{7}{9}, 0.5, \frac{4}{1}, 0 . \overline{33}\end{array}\right\}$

Examples:

6. Given set $B=\left\{-2, \frac{1}{3}, \sqrt{2}, 0, \frac{8}{3}, \pi, \sqrt{36}\right\}$, list the following:
a. Rational Numbers

$$
\left\{-2, \frac{1}{3}, 0, \frac{8}{3}, \sqrt{36}\right\}
$$

b. Irrational Numbers
c. Integers
$\frac{\{\sqrt{2}, \pi\}}{\{-2,0,} \sqrt{\{0, \sqrt{36}\}}$
$\frac{\{\sqrt{36}\}}{}$

Properties of Fractions	
$\frac{k a}{k b}=\frac{a}{b}$	In order to reduce a fraction, cancel common factors
$\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b} \quad \frac{a}{b}-\frac{c}{b}=\frac{a-c}{b}$	In order to add or subtract fractions, the denominators must be the same
$\frac{a}{b}+\frac{c}{d}=\frac{a}{b} \cdot \frac{d}{d}+\frac{c}{d} \cdot \frac{b}{b}=\frac{a d+c b}{b d}$	\rightarrow find the least common denominator (LCD)
$\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$	In order to multiply fractions, multiply numerators together and multiply denominators together \rightarrow multiplication goes straight across
$\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}$	In order to divide fractions, multiply by the reciprocal \rightarrow division flips the second fraction then changes to multiplication

Properties of Negatives	
$-(-a)=a$	
$(-a)(-b)=a b$	An even number of negatives results in a
positive number	
$\frac{-a}{-b}=-\frac{-a}{b}=-\frac{a}{-b}=\frac{a}{b}$	
$(-a) b=-a b$	
$-1(a)=-a$	
$\frac{-a}{b}=-\frac{a}{b}=\frac{a}{-b}$	An odd number of negatives results in a
negative number	

Examples:

1. $\frac{3}{2}+\frac{-2}{3}=\frac{5}{6}$
2. $\frac{3}{2} \div-\frac{2}{3}=-\frac{9}{4}$
3. $\frac{3}{2} \cdot \frac{2}{-3}=-1$

Properties of Equality		
Name	Example	Translation
Reflexive Property	$a=a$	Every number is equal to itself.
Symmetric Property	If $a=b$, then $b=a$.	The order in which you write an equation is insignificant.
Transitive Property	If $a=b$ and $b=c$, then $a=c$.	Two numbers equal to the same number are equal to each other.
Addition Property	If $a=b$, then $a+c=b+c$ and $c+a=c+b$.	If you add to one side of an equation, then you must add the same amount to the other. \rightarrow Equations must be balanced!
Multiplication Property	If $a=b$, then $a c=b c$ and $c a=c b$.	If you multiply on one side of an equation, you must multiply the same amount on the other. \rightarrow Equations must be balanced!
Distributive Property	$\begin{aligned} & a(b+c)=a b+a c \\ & (b+c) a=b a+c a \end{aligned}$	In order to multiply a number by a quantity, you must multiply that number by each number inside the quantity

Zero Properties	
$a \bullet 0=0 \bullet a=0$	Any number multiplied by zero is zero
If $A B=0$, then $\boldsymbol{A}=0$ or $\boldsymbol{B}=0$, or $\boldsymbol{A}=0$ and $\boldsymbol{B}=\mathbf{0}$	If the product of two numbers is zero, then one or both of the numbers must be zero.
Example: \quad If $(x+2)(x-3)=0$, then $\boldsymbol{x}+\mathbf{2}=\mathbf{0}$ or $\boldsymbol{x}-\mathbf{3}=\mathbf{0}$.	

Field Properties of Real Numbers		
Name	Example	Translation
Commutative Property	$a+b=b+a$ $a b=b a$	An operation is commutative when a change in order yields the same result
Associative Property	$(a+b)+c=a+(b+c)$ $(a b) c=a(b c)$	An operation is associative when a change in grouping yields the same result
Identity Property for Addition	$a+0=a$ and $0+a=a$	Zero is the additive identity Adding zero to any number will not change the number
Identity Property for Multiplication	$a \cdot 1=a$ and $1 \cdot a=a$	One is the multiplicative identity Multiplying by one will not change the number
Inverse Property of Addition - Property of Opposites	$a+(-a)=0$ and $(-a)+a=0$	Adding a number and its opposite will result in zero
Inverse Property of Multiplication - Property of Reciprocals	$a \cdot \frac{1}{a}=1$ and $\frac{1}{a} \cdot a=1$	

Examples:

1. Write the property that justifies each step.

$$
\begin{aligned}
(7+3)+[(-7)+(-3)] & =[(7+3)+(-7)]+(-3) \\
& =[7+(-7)+3]+(-3) \\
& =[0+3]+(-3) \\
& =3+(-3) \\
& =0
\end{aligned}
$$

> Associative Property Of Addition

Associative and

Commutative Properties Inverse Property of Addition (Property of Opposites)

Identity Property

 of AdditionInverse Property of
Addition (Property of Opposites)

Page 6 of 15
2. Write the property that justifies each step.

$$
\begin{aligned}
& 3-\{4-2[3+2+(-3)]\}=3-\{4-2[2+3+(-3)]\} \begin{array}{c}
\frac{\text { Commutative Property }}{\text { Of Addition }}
\end{array} \\
&=3-\{4-2[2+0]\} \quad \begin{array}{c}
\frac{\text { Inverse Property of }}{\text { Addition (Property of }} \begin{array}{c}
\text { Opposites) }
\end{array} \\
\\
\\
=3-\{4-2[2]\} \\
\\
\\
=3-\{4-4\} \\
\\
\end{array}=3-\{0\} \\
& \begin{array}{c}
\text { Identity Property } \\
\text { of Addition }
\end{array} \\
& \text { Simplify } \\
& \hline \begin{array}{c}
\text { Inverse Property of } \\
\text { Addition (Property of } \\
\text { Opposites) }
\end{array} \\
& \begin{array}{c}
\text { Identity Property } \\
\text { of Addition }
\end{array} \\
& \hline
\end{aligned}
$$

1.2 Radicals

Essential Question(s):

- How do you simplify radicals?
- How do you convert radicals to rational exponents and vice versa?

Simplifying Radicals

$\sqrt[n]{a^{n}}=(\sqrt[n]{a})^{n}=a \quad$ When the index and the exponent are equal, they cancel
Note: When n is even, the result should include the absolute value $\sqrt{x^{2}}=|x|$

$\sqrt[3]{x^{4}}=x \sqrt[3]{x}$	Exponents in the radicand must be less than the index
$\sqrt[6]{x^{3}}=\sqrt{x}$	Exponents in the radicand CANNOT have a common factor other than one with the index
$\frac{1}{\sqrt{9}}=\frac{1}{3}$	No radicals in the denominator
$\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$	No fractions within the radical

Examples:

1. $\sqrt{12}=2 \sqrt{3}$
2. $\sqrt{32}=4 \sqrt{2}$
3. $\sqrt[3]{8}=2$
4. $\sqrt[3]{625}=5 \sqrt[3]{5}$
5. $\sqrt[4]{x^{4}}=|x|$
6. $\sqrt[5]{x^{5}}=x$
7. $\sqrt[4]{x^{5}}=|x| \sqrt[4]{x}$
8. $\sqrt[3]{x^{5}}=x \sqrt[3]{x^{2}}$
9. $\sqrt[4]{x^{6}}=\sqrt{x^{3}}=|x| \sqrt{x}$
10. $\sqrt{18 x^{5} y^{2} z^{3}}=3 x^{2}|y z| \sqrt{2 x z}$
11. $\sqrt[10]{x^{5}}=\sqrt{x}$
12. $\sqrt[3]{8 x^{5} y^{3}}=2 x y \sqrt[3]{x}$

Properties of Radicals:		
Name	Formula	Translation
Product Property	$a \sqrt{x} \square \sqrt{y}=a b \sqrt{x y}$	Coefficients multiply together and radicands multiply together \rightarrow Outside times outside Inside times inside
> Make sure to fully the simplify the resulting radical!		

Examples (Assume all variables are positive- no need to include absolute values):

1. $2 \sqrt{6} \square \sqrt{2}=2 \sqrt{12}=4 \sqrt{3}$
2. $3 \sqrt[3]{4}[\sqrt[3]{10}=3 \sqrt[3]{40}=6 \sqrt[3]{5}$
3. $\sqrt[3]{\frac{x^{2}}{8}}=\frac{\sqrt[3]{x^{2}}}{2}$
4. $\sqrt[4]{\frac{x}{16}}=\frac{\sqrt[4]{x}}{2}$
5. $\sqrt[4]{27 a^{3} b^{3}} \cdot \sqrt[4]{3 a^{5} b^{3}}$
$=\sqrt[4]{81 a^{8} b^{6}}=3 a^{2} b \sqrt[4]{b^{2}}=3 a^{2} b \sqrt{b}$
6. $\sqrt[3]{12 x^{3} y^{2} z^{7}} \sqsubset \sqrt[3]{3 x y^{2} z}$
$=\sqrt[3]{36 x^{4} y^{4} z^{8}}=x y z^{2} \sqrt[3]{36 x y z^{2}}$
7. $\sqrt[3]{\sqrt[4]{x}}=\sqrt[12]{x}$
8. $\sqrt{\sqrt{x^{4}}}=\sqrt[4]{x^{4}}=x$

Properties of Radicals:		
Name	Example	Translation
Addition Property	$\sqrt{a}+\sqrt{a}=2 \sqrt{a}$	
	When the radicand and the index are equal, add/subtract the coefficients	
	\rightarrow You must have like terms to add or subtract	

Examples:

1. $6 \sqrt{2}+2 \sqrt{2}=8 \sqrt{2}$
2. $4 \sqrt[3]{5}-\sqrt[3]{5}=3 \sqrt[3]{5}$
3. $3 \sqrt[5]{2 x^{2} y^{3}}-8 \sqrt[5]{2 x^{2} y^{3}}=-5 \sqrt[5]{2 x^{2} y^{3}}$
4. $5 \sqrt[3]{m n^{2}}-3 \sqrt{m n}-2 \sqrt[3]{m n^{2}}+7 \sqrt{m n}$ $=3 \sqrt[3]{m n^{2}}+4 \sqrt{m n}$

Rationalizing the Denominator	
Rationalizing the denominator is fraction. Example: $\frac{4}{\sqrt{3}}$	a process of removing a radical from the denominator of a Step 1: $\frac{4}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \quad$ Step 2: $\frac{4 \sqrt{3}}{\sqrt{9}} \quad$ Step 3: $\frac{4 \sqrt{3}}{3}$
Form of the denominator:	Multiply numerator AND denominator by:
\sqrt{b}	$\sqrt{b} \quad$ multiply by the same square root
$\sqrt[n]{b}$	$\sqrt[n]{\boldsymbol{b}^{?}} \quad$ multiply to get an exponent of n
$a+\sqrt{b}$	$a-\sqrt{\boldsymbol{b}} \quad$ multiply by the conjugate
$a-\sqrt{b}$	$a+\sqrt{\boldsymbol{b}} \quad$ multiply by the conjugate

Examples:

1. $\frac{6}{\sqrt{2 x}} \cdot \frac{\sqrt{2 x}}{\sqrt{2 x}}=\frac{6 \sqrt{2 x}}{2 x}=\frac{3 \sqrt{2 x}}{x}$
2. $\sqrt{\frac{x^{2}}{y^{3}}}=\frac{x}{y \sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}=\frac{x}{y^{2}}$
3. $\frac{10 x^{3}}{\sqrt[3]{4 x}} \cdot \frac{\sqrt[3]{2 x^{2}}}{\sqrt[3]{2 x^{2}}}=\frac{10 x^{3} \sqrt[3]{2 x^{2}}}{2 x}=5 x^{2} \sqrt[3]{2 x^{2}}$
4. $\sqrt[3]{\frac{8 c}{9 d^{5}}}=\frac{\sqrt[3]{8 c}}{d \sqrt[3]{3^{2} d^{2}}} \cdot \frac{\sqrt[3]{3 d}}{\sqrt[3]{3 d}}=\frac{\sqrt[3]{24 c d}}{3 d^{2}}$
5. $\frac{\sqrt{x}+2}{2 \sqrt{x}+3} \cdot \frac{2 \sqrt{x}-3}{2 \sqrt{x}-3}=\frac{2 \sqrt{x^{2}}-3 \sqrt{x}+4 \sqrt{x}-6}{4 \sqrt{x^{2}}-9}=\frac{2 x+\sqrt{x}-6}{4 x-9}$
6. $\frac{3+\sqrt{5}}{3-\sqrt{5}} \frac{3+\sqrt{5}}{3+\sqrt{5}}=\frac{9+2 \sqrt{5}+5}{9-5}=\frac{14+2 \sqrt{5}}{4}=\frac{7+\sqrt{2}}{2}$

1.3 Exponents

Essential Question(s):

- How do you simplify exponential expressions?
- How do you express numbers using scientific notation?

Integer Exponents

For n a positive integer, $a^{n}=a \cdot a \cdot \ldots \cdot a \rightarrow n$ factors of a	" α " multiplies by itself " n " times
For $n=0$ $a^{0}=1 \quad a \neq 0$	Anything to the zero power is ONE Caution: 0^{0} is not defined
For n a negative integer: $a^{-n}=\frac{1}{a^{n}}$	A negative exponent results in a reciprocal \rightarrow flip the fraction! Caution: A negative exponent DOES NOT result in a negative number!!

Examples:

1. $636^{0}=1$
2. $\left(x^{2}\right)^{0}=x^{0}=1$
3. $\frac{1}{10^{-3}}=10^{3}=1000$
4. $\frac{u^{-7}}{v^{-3}}=\frac{v^{3}}{u^{7}}$
5. $\frac{1}{x^{-4}}=x^{4}$
6. $10^{-5}=\frac{1}{10^{5}}=\frac{1}{10000}=0.00001$

Properties of Integer Exponents	
$a^{m} a^{n}=a^{m+n}$	If bases are the same, add exponents
$\left(a^{n}\right)^{m}=a^{m n}$	If bases are the same, multiply exponents
$\frac{a^{m}}{a^{n}}=\left\{\begin{array}{l}a^{m-n} \\ \frac{1}{a^{n-m}}\end{array} \quad a \neq 0\right.$	If bases are the same, subtract exponents
$(a b)^{m}=a^{m} b^{m}$	If bases are different, distribute exponents
$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad b \neq 0$	If bases are different, distribute exponents

Examples:

1. $\left(5 x^{-3}\right)\left(3 x^{4}\right)=15 x$
2. $\frac{9 y^{-7}}{6 y^{-4}}=\frac{3}{2 y^{3}}$
3. $\left(2 y^{2}\right)\left(3 y^{5}\right)=6 y^{7}$
4. $\frac{6 m^{-2} n^{3}}{15 m^{-1} n^{-2}}=\frac{2 n^{5}}{5 m}$
5. $\left(\frac{x^{2}}{y^{4}}\right)^{-3}=\frac{y^{12}}{x^{6}}$
6. $\left(\frac{x^{-3}}{y^{4} y^{-4}}\right)^{-3}=x^{9}$
7. $\left(3 x^{4} y^{-3}\right)^{-2}=3^{-2} x^{-8} y^{6}=\frac{y^{6}}{9 x^{8}}$
8. $\frac{1}{(a-b)^{-2}}=(a-b)^{2}=a^{2}-2 a b+b^{2}$
9. $2 x^{4}-(-2 x)^{4}=2 x^{4}-16 x^{4}=-14 x^{4}$
10. $(x+y)^{-2}=\frac{1}{(x+y)^{2}}=\frac{1}{x^{2}+2 x y+y^{2}}$

Examples:

1. Change from rational exponent form to radical form.
a. $u^{\frac{1}{5}}=\sqrt[5]{u}$
b. $w^{\frac{2}{3}}=\sqrt[3]{u^{2}}$
c. $(3 x y)^{-\frac{3}{5}}=\sqrt[5]{(3 x y)^{-3}}=\frac{1}{\sqrt[5]{27 x^{3} y^{3}}}$
d. $a b^{\frac{-2}{3}}=\frac{a}{\sqrt[3]{b^{2}}}$
2. Change from radical form to rational exponent form.
a. $\sqrt[4]{9 u}=(9 u)^{\frac{1}{4}}$
b. $\sqrt[3]{x^{3}+y^{3}}=\left(x^{3}+y^{3}\right)^{\frac{1}{3}}$
c. $\sqrt[7]{(-2 x)^{4}}=(-2 x)^{\frac{4}{7}}$
d. $-\sqrt[7]{(2 x)^{4}}=-(2 x)^{\frac{4}{7}}$

Evaluate:

1. $4^{\frac{1}{2}}=\sqrt{4}=2$
2. $-4^{\frac{1}{2}}=-\sqrt{4}=-2$
3. $(-4)^{\frac{1}{2}}=\sqrt{-4}=$ not real
4. $(-8)^{\frac{1}{3}}=\sqrt[3]{-8}=-2$
5. $9^{\frac{3}{2}}=\sqrt{9^{3}}=9 \sqrt{9}=9(3)=27$
6. $(-27)^{\frac{4}{3}}$

$$
=\sqrt[3]{(-27)^{4}}=-27 \sqrt[3]{-27}=-27(-3)=81
$$

Simplify. Write your answer in exponential form (using positive exponents only) and simplest radical form (where applicable).

1. $\left(2 x^{-\frac{3}{4}} y^{\frac{1}{4}}\right)^{4}=16 x^{-3} y=\frac{16 y}{x^{3}}$
2. $\left(\frac{4 x^{-2}}{y^{4}}\right)^{-\frac{1}{2}}=\frac{2^{-1} x}{y^{-2}}=\frac{x y^{2}}{2}$
3. $\left(3 x^{\frac{1}{3}}\right)\left(2 x^{\frac{1}{2}}\right)=6 x^{\frac{2}{6}+\frac{3}{6}}=6 x^{\frac{5}{6}}=\underbrace{6 \sqrt[6]{x^{5}}}_{\text {Rad. Form }}$

Exp. Form
4. $\left(5 y^{\frac{3}{4}}\right)\left(2 y^{\frac{1}{3}}\right)=10 y^{\frac{9}{12}+\frac{4}{12}}=10 y^{\frac{13}{12}}=10 \sqrt[12]{y^{13}}=10 y \sqrt[11]{y}$

Rad. Form

