1.1 Algebra and Real Numbers

Essential Question(s):

- How do you categorize real numbers?
- How do you add, subtract, multiply, and divide real numbers?

Set	A collection of objects		
Element (Member)	Each object in a setEx. 3 $\in \{1,2,3\}$ "3 is an element of the set"		
Finite Set	Elements in the set can be <mark>counted</mark>		
Infinite Set	Elements in the set can be counted without end		
Empty (Null) Set	The set that contains <mark>no elements</mark> . Notation: Ø Note: The empty set is a <mark>subset</mark> of any set.		
Listing (Roster) Method	Set notation that lists the elements of a set. Ex: A = { 1, 2, 3, 4 }		
Set Builder (Rule) Notation	Set notation that uses a rule to describe the members of the set. Ex: $\{x \mid x > 5\}$ <i>"x such that x is greater than 5"</i>		
Subset	A set of elements that are members of a larger set Ex. $A \subset B$ "set A is a subset of set B"		
Equal Sets	Two or more sets having exactly the same elements		
Intersection of Sets	The set of elements common to both sets A AND B \rightarrow Think overlapping sets Notation: $A \cap B$ "A intersect B"		
Union of Sets	The set of elements that are members of set A OR of set B OR of both sets \rightarrow Think all of set A with all of set B Notation: $A \cup B$ "A union B"		

Important Symbols					
\in "element of" \subset "subset of" \oslash "null set"					
I	"such that"	\cap	"intersection"	\cup	"union"

1. List all possible subsets of $A = \{1, 2, 3\}$

<mark>{1,2,3}</mark>	<mark>{1,2}</mark>	<mark>{1,3}</mark>	<mark>{2,3}</mark>
<mark>{1}</mark>	<mark>{2}</mark>	<mark>{3}</mark>	Ø

2. Determine whether each of the following is true or false.

- **3.** Write each of the following sets using *set builder notation*.
 - a. {2, 4, 6, 8, 10} [x | x an even integer between 2 and 10 inclusive]
 - **b.** {1, 2, 3, 4, 5} {*x* | *x* an integer between 1 and 5 inclusive}
- **4.** Write the following set using the *listing method*.

a.	$\{x \mid x \text{ is a letter in the word ALGEBRA}\}$	<mark>{A, L, G, E, B, R}</mark>
b.	$\{x \mid x \text{ is an even integer between 6 and 12 inclusive}\}$	<mark>{6, 8, 10, 12</mark> }

- **5.** Given set *A*= {1, 2, 3, 4, 5, 6} and set *B*= {2, 4, 6, 8}, find the following:
 - a. $A \cap B$ $\{2, 4, 6\}$

 b. $A \cup B$ $\{1, 2, 3, 4, 5, 6, 8\}$

Natural Numbers	ImbersThe set of positive counting numbers $\{1, 2, 3,\}$	
Whole Numbers	The set of natural numbers AND zero $\{0,1,2,3,\}$	
Integers	The set of whole numbers AND their opposites $\{, -3, -2, -1, 0, 1, 2, 3,\}$	
Rational Numbers	The set of numbers than can be written as a quotient of two integers. Rational means fractional (decimals that terminate or repeat) Ex. $-\frac{5}{3}, \frac{7}{9}, 0.5, \frac{4}{1}, 0.\overline{33}$	
Irrational Numbers	The set of numbers that are not rational (13 and nonterminating decimal numbers) Ex. $\sqrt{7}, \pi, -\sqrt{13}$	
Real Numbers	The set of <mark>rational numbers and irrational numbers</mark>	

6. Given set
$$B = \left\{-2, \frac{1}{3}, \sqrt{2}, 0, \frac{8}{3}, \pi, \sqrt{36}\right\}$$
, list the following:
a. Rational Numbers
b. Irrational Numbers
c. Integers
d. Whole Numbers
e. Natural Numbers

$$\frac{\left\{-2, \frac{1}{3}, 0, \frac{8}{3}, \sqrt{36}\right\}}{\left\{\sqrt{2}, \pi\right\}}$$

Properties of Fractions		
$\frac{ka}{kb} = \frac{a}{b}$	In order to <mark>reduce</mark> a fraction, cancel <mark>common</mark> <mark>factors</mark>	
$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b} \qquad \frac{a}{b} - \frac{c}{b} = \frac{a-c}{b}$ $\frac{a}{b} + \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{d} + \frac{c}{d} \cdot \frac{b}{b} = \frac{ad+cb}{bd}$	In order to <mark>add</mark> or <mark>subtract</mark> fractions, the <mark>denominators must be the same</mark> →find the least common denominator (LCD)	
$\frac{a}{b} \bullet \frac{c}{d} = \frac{ac}{bd}$	In order to <mark>multiply</mark> fractions, multiply numerators together and multiply denominators together →multiplication goes straight across	
$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \bullet \frac{d}{c}$	In order to <mark>divide</mark> fractions, multiply by the reciprocal →division flips the second fraction then changes to multiplication	

Properties o	of Negatives
$-(-a) = a$ $(-a)(-b) = ab$ $\frac{-a}{-b} = -\frac{-a}{-b} = \frac{a}{-b}$	An <mark>even</mark> number of negatives results in a <mark>positive</mark> number
$(-a)b = -ab$ $-1(a) = -a$ $\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$	An <mark>odd</mark> number of negatives results in a <mark>negative</mark> number

1.
$$\frac{3}{2} + \frac{-2}{3} = \frac{5}{6}$$

2. $\frac{3}{2} \div -\frac{2}{3} = -\frac{9}{4}$
3. $\frac{3}{2} \div \frac{2}{-3} = -1$

Properties of Equality			
Name	Example	Translation	
Reflexive Property	a = a	Every number is <mark>equal to itself</mark> .	
Symmetric Property	If $a = b$, then $b = a$.	The <mark>order</mark> in which you write an equation is insignificant.	
Transitive Property	If $a = b$ and $b = c$, then $a = c$.	Two numbers equal to the same number are <mark>equal to each other</mark> .	
Addition Property	If $a = b$, then a+c=b+c and $c+a=c+b$.	If you add to one side of an equation, then you must add the same amount to the other. →Equations must be balanced!	
Multiplication Property	If $a = b$, then ac = bc and $ca = cb$.	If you multiply on one side of an equation, you must multiply the same amount on the other. →Equations must be balanced!	
Distributive Property	a(b+c) = ab + ac $(b+c)a = ba + ca$	In order to multiply a number by a quantity, you must <mark>multiply</mark> that number <mark>by each number inside the</mark> quantity	

Zero Properties		
$a \bullet 0 = 0 \bullet a = 0$	Any number multiplied by zero is zero	
If $AB = 0$, then $A = 0$ or $B = 0$, or $A = 0$ and $B = 0$	If the product of two numbers is zero, then <mark>one</mark> or both of the numbers must be zero.	
Example: If $(x+2)(x-3) = 0$, the set of	then $x + 2 = 0$ or $x - 3 = 0$.	

Field Properties of Real Numbers			
Name	Example	Translation	
Commutative Property	a + b = b + a ab = ba	An operation is commutative when a <mark>change in order</mark> yields the same result	
Associative Property	(a + b) + c = a + (b + c) (ab)c=a(bc)	An operation is associative when a <mark>change in grouping</mark> yields the same result	
Identity Property for Addition	<i>a</i> + 0 = <i>a</i> and 0 + <i>a</i> = <i>a</i>	<mark>Zero</mark> is the <i>additive identity</i> Adding <mark>zero</mark> to any number will not change the number	
Identity Property for Multiplication	$a \cdot 1 = a$ and $1 \cdot a = a$	<mark>One</mark> is the <i>multiplicative identity</i> Multiplying by <mark>one</mark> will not change the number	
Inverse Property of Addition – Property of Opposites	<i>a</i> + (- <i>a</i>) = 0 and (- <i>a</i>) + <i>a</i> = 0	Adding <mark>a number</mark> and <mark>its opposite</mark> will result in zero	
Inverse Property of Multiplication - Property of Reciprocals	$a \cdot \frac{1}{a} = 1$ and $\frac{1}{a} \cdot a = 1$	Multiplying <mark>a number</mark> and its reciprocal will result in one	

1. Write the property that justifies each step.

$$\begin{array}{ll} (7+3)+[(-7)+(-3)] & =[(7+3)+(-7)]+(-3) \\ & =[(7+(-7)+3]+(-3) \\ & =[(7+(-7)+3]+(-3) \\ & =[(0+3]+(-3) \\ & =3+(-3) \\ & =0 \end{array} \qquad \begin{array}{ll} \mbox{Associative Property} \\ & \mbox{Addition} \\ \mbox{Associative and} \\ & \mbox{Commutative} \\ & \mbox{Properties} \\ & \mbox{Inverse Property of} \\ & \mbox{Addition (Property of} \\ & \mbox{Opposites}) \\ & \mbox{Identity Property} \\ & \mbox{of Addition} \\ & \mbox{Inverse Property of} \\ & \mbox{Addition (Property of} \\ & \$$

Page 6 of 15

2. Write the property that justifies each step.

$$3-\{4-2[3+2+(-3)]\} = 3-\{4-2[2+3+(-3)]\} \frac{\text{Commutative Property}}{\text{Of Addition}}$$

$$= 3-\{4-2[2+0]\} = 3-\{4-2[2]\} = 3-\{4-2[2]\} = 3-\{4-4\} = 3-\{4-4\} = 3-\{0\} = 3-\{0\} = 3$$

1.2 Radicals

Essential Question(s):

- How do you simplify radicals?
- How do you convert radicals to rational exponents and vice versa?

Anatomy of a radical:

Simplifying Radicals		
$\sqrt[n]{a^n} = \left(\sqrt[n]{a}\right)^n = a$	When the index and the exponent are equal, they cancel Note: When <i>n</i> is even, the result should include the absolute value $\sqrt{x^2} = x $	
$\sqrt[3]{x^4} = x\sqrt[3]{x}$	Exponents in the radicand must be less than the index	
$\sqrt[6]{x^3} = \sqrt{x}$	Exponents in the radicand CANNOT have <mark>a common factor other than one with the index and the second se</mark>	
$\frac{1}{\sqrt{9}} = \frac{1}{3}$	No radicals in the <mark>denominator</mark>	
$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{2}$	No <mark>fractions</mark> within the radical	

Examples:

1. $\sqrt{12} = 2\sqrt{3}$

2. $\sqrt{32} = 4\sqrt{2}$

4. $\sqrt[3]{625} = 5\sqrt[3]{5}$

Properties of Radicals:		
Name	Formula	Translation
Product Property	$a\sqrt{x}$ $b\sqrt{y} = ab\sqrt{xy}$	 Coefficients multiply together and radicands multiply together →Outside times outside Inside times inside Make sure to fully the simplify the resulting radical!
Division Property	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	The square root of a quotient is the quotient of the square roots → You can break apart division
Nested Radical	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$	To take the radical of a radical, <mark>multiply the</mark> indexes then simplify

Examples (Assume all variables are positive- no need to include absolute values):

1.
$$2\sqrt{6} \sqrt{2} = 2\sqrt{12} = 4\sqrt{3}$$

2.
$$3\sqrt[3]{4}\sqrt[3]{10} = 3\sqrt[3]{40} = 6\sqrt[3]{5}$$

3.
$$\sqrt[3]{\frac{x^2}{8}} = \frac{\sqrt[3]{x^2}}{2}$$
 4. $\sqrt[4]{\frac{x}{16}} = \frac{\sqrt[4]{x}}{2}$

6. $\sqrt[3]{12x^3y^2z^7} = \sqrt[3]{3xy^2z}$ = $\sqrt[3]{36x^4y^4z^8} = xyz^2 \sqrt[3]{36xyz^2}$

7.
$$\sqrt[3]{\sqrt[4]{x}} = \sqrt[12]{x}$$
 8. $\sqrt{\sqrt{x^4}} = \sqrt[4]{x^4} = x$

Properties of Radicals:				
Name	Example	Translation		
Addition Property	$\sqrt{a} + \sqrt{a} = 2\sqrt{a}$ $4\sqrt{a} - \sqrt{a} = 3\sqrt{a}$	When the radicand and the index are equal, add/subtract the coefficients →You must have like terms to add or subtract		

Examples:

1. $6\sqrt{2} + 2\sqrt{2} = 8\sqrt{2}$

2.
$$4\sqrt[3]{5} - \sqrt[3]{5} = 3\sqrt[3]{5}$$

3.
$$3\sqrt[5]{2x^2y^3} - 8\sqrt[5]{2x^2y^3} = -5\sqrt[5]{2x^2y^3}$$

4.
$$5\sqrt[3]{mn^2} - 3\sqrt{mn} - 2\sqrt[3]{mn^2} + 7\sqrt{mn}$$

= $3\sqrt[3]{mn^2} + 4\sqrt{mn}$

Rationalizing the Denominator					
Rationalizing the denominator is a process of <mark>removing a radical from the denominator of a</mark> fraction.					
Example: $\frac{4}{\sqrt{3}}$ Step 1	$: \frac{4}{\sqrt{3}} \stackrel{\sqrt{3}}{\longrightarrow} 3$ Step 2: $\frac{4\sqrt{3}}{\sqrt{9}}$ Step 3: $\frac{4\sqrt{3}}{3}$				
Form of the denominator:	Multiply numerator AND denominator by:				
\sqrt{b}	\sqrt{b} multiply by the same square root				
$\sqrt[n]{b}$	"√b[?] multiply to get an exponent of n				
$a + \sqrt{b}$	$a - \sqrt{b}$ multiply by the conjugate				
$a-\sqrt{b}$	$a + \sqrt{b}$ multiply by the conjugate				

1.
$$\frac{6}{\sqrt{2x}} \cdot \frac{\sqrt{2x}}{\sqrt{2x}} = \frac{6\sqrt{2x}}{2x} = \frac{3\sqrt{2x}}{x}$$

$$2. \quad \sqrt{\frac{x^2}{y^3}} = \frac{x}{y\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}} = \frac{x}{y^2}$$

3.
$$\frac{10x^3}{\sqrt[3]{4x}} \cdot \frac{\sqrt[3]{2x^2}}{\sqrt[3]{2x^2}} = \frac{10x^3\sqrt[3]{2x^2}}{2x} = 5x^2\sqrt[3]{2x^2}$$

$$4. \quad \sqrt[3]{\frac{8c}{9d^5}} = \frac{\sqrt[3]{8c}}{d\sqrt[3]{3^2d^2}} = \frac{\sqrt[3]{3d}}{\sqrt[3]{3d}} = \frac{\sqrt[3]{24cd}}{3d^2}$$

5.
$$\frac{\sqrt{x+2}}{2\sqrt{x+3}} \cdot \frac{2\sqrt{x-3}}{2\sqrt{x-3}} = \frac{2\sqrt{x^2} - 3\sqrt{x} + 4\sqrt{x-6}}{4\sqrt{x^2} - 9} = \frac{2x + \sqrt{x-6}}{4x - 9}$$

6.
$$\frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{3+\sqrt{5}}{3+\sqrt{5}} = \frac{9+2\sqrt{5}+5}{9-5} = \frac{14+2\sqrt{5}}{4} = \frac{7+\sqrt{2}}{2}$$

1.3 Exponents

Essential Question(s):

- How do you simplify exponential expressions?
- How do you express numbers using scientific notation?

Integer Exponents			
For <i>n</i> a positive integer, $a^n = a \cdot a \cdot \dots \cdot a \rightarrow n$ factors of a	<i>"a"</i> multiplies by itself " <i>n"</i> times		
For <i>n</i> = <mark>0</mark>	Anything to the zero power is ONE		
$a^0 = 1$ $a \neq 0$	Caution: 0^0 is not defined		
For <i>n</i> a <mark>negative</mark> integer:	A negative exponent results in a reciprocal		
$a^{-n} = \frac{1}{2}$	→flip the fraction!		
a^n	Caution: A negative exponent DOES NOT result in a negative number!!		

Examples:

1. $636^{\circ} = 1$

2.
$$\frac{1}{10^{-3}} = 10^3 = 1000$$

3.
$$\frac{u^{-7}}{v^{-3}} = \frac{v^3}{u^7}$$

6.
$$\frac{1}{x^{-4}} = x^4$$

Properties of Integer Exponents		
$a^m a^n = a^{m+n}$	If bases are the same, add exponents	
$\left(a^n\right)^m = a^{mn}$	If bases are the same, <mark>multiply</mark> <mark>exponents</mark>	
$\frac{a^m}{a^n} = \begin{cases} a^{m-n} \\ \frac{1}{a^{n-m}} \end{cases} \qquad a \neq 0$	If bases are the same, <mark>subtract</mark> <mark>exponents</mark>	
$(ab)^m = a^m b^m$	If bases are different, <mark>distribute</mark> <mark>exponents</mark>	
$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \qquad b \neq 0$	If bases are different, <mark>distribute</mark> <mark>exponents</mark>	

1.
$$(5x^{-3})(3x^4) = 15x$$

6. $(2y^2)(3y^5) = 6y^7$

2.
$$\frac{9y^{-7}}{6y^{-4}} = \frac{3}{2y^3}$$
 7. $\frac{6m^{-2}n^3}{15m^{-1}n^{-2}} = \frac{2n^5}{5m}$

3.
$$\left(\frac{x^2}{y^4}\right)^{-3} = \frac{y^{12}}{x^6}$$

8.
$$\left(\frac{x^{-3}}{y^4y^{-4}}\right)^{-3} = x^9$$

4.
$$(3x^4y^{-3})^{-2} = 3^{-2}x^{-8}y^6 = \frac{y^6}{9x^8}$$

5.
$$\frac{1}{(a-b)^{-2}} = (a-b)^2 = a^2 - 2ab + b^2$$

9.
$$2x^4 - (-2x)^4 = 2x^4 - 16x^4 = -14x^4$$

10.
$$(x+y)^{-2} = \frac{1}{(x+y)^2} = \frac{1}{x^2 + 2xy + y^2}$$

Page 13 of 15

1. Change from rational exponent form to radical form.

a.
$$u^{\frac{1}{5}} = \sqrt[5]{u}$$

b. $w^{\frac{2}{3}} = \sqrt[3]{u^2}$
c. $(3xy)^{-\frac{3}{5}} = \sqrt[5]{(3xy)^{-3}} = \frac{1}{\sqrt[5]{27x^3y^3}}$
d. $ab^{\frac{-2}{3}} = \frac{a}{\sqrt[3]{b^2}}$

2. Change from radical form to rational exponent form.

a.
$$\sqrt[4]{9u} = (9u)^{\frac{1}{4}}$$

b. $\sqrt[3]{x^3 + y^3} = (x^3 + y^3)^{\frac{1}{3}}$
c. $\sqrt[7]{(-2x)^4} = (-2x)^{\frac{4}{7}}$
d. $-\sqrt[7]{(2x)^4} = -(2x)^{\frac{4}{7}}$

Evaluate:

- **1.** $4^{\frac{1}{2}} = \sqrt{4} = 2$
- **3.** $(-4)^{\frac{1}{2}} = \sqrt{-4} = \text{not real}$
- **5.** $(-8)^{\frac{1}{3}} = \sqrt[3]{-8} = -2$
- **7.** $9^{\frac{3}{2}} = \sqrt{9^3} = 9\sqrt{9} = 9(3) = 27$

2.
$$-4^{\frac{1}{2}} = -\sqrt{4} = -2$$

4.
$$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$$

6.
$$0^{\frac{1}{8}} = \sqrt[8]{0} = 0$$

8.
$$(-27)^{\frac{4}{3}}$$

= $\sqrt[3]{(-27)^4} = -27\sqrt[3]{-27} = -27(-3) = 81$

Simplify. Write your answer in *exponential form* (using positive exponents only) and *simplest radical form* (where applicable).

1.
$$\left(2x^{-\frac{3}{4}}y^{\frac{1}{4}}\right)^4 = 16x^{-3}y = \frac{16y}{x^3}$$

$$2. \quad \left(\frac{4x^{-2}}{y^4}\right)^{-\frac{1}{2}} = \frac{2^{-1}x}{y^{-2}} = \frac{xy^2}{2}$$

Exp. Form
3.
$$\left(3x^{\frac{1}{3}}\right)\left(2x^{\frac{1}{2}}\right) = 6x^{\frac{2}{6}+\frac{3}{6}} = 6x^{\frac{5}{6}} = 6\sqrt[6]{x^5}$$

Rad. Form

