Honor's Keystone Geometry 2.6 - 2.7 Proof Practice

Name _____

Date

In Exercises 1–3, complete the proof.

1. GIVEN: $\angle ABC \cong \angle CBD$, $m \angle CBD = 50^{\circ}$, $m \angle CBE = 100^{\circ}$ **PROVE:** $m \angle ABC \cong \angle DBE$

Statements		Reasons	
1.	$\angle ABC \cong \angle CBD, m \angle CBD = 50^\circ,$ $m \angle CBE = 100^\circ$	1.	
2.	$__= m \angle CBE$	2.	Angle Addition Postulate
3.	$50^\circ + m \angle DBE = 100^\circ$	3.	
4.	$m \angle DBE = 50^{\circ}$	4.	
5.	$m \angle CBD = _$	5.	Substitution Property of Equality
6.		6.	Definition of congruent angles
7.	$\angle ABC \cong \angle DBE$	7.	

2. The lengths of the sides of quadrilateral *ABCD* are equal. Prove that the perimeter of *ABCD* is equal to 4*AB*.

GIVEN: $\overline{AB} \cong \overline{BC}, \overline{BC} \cong \overline{CD}, \overline{CD} \cong \overline{AD}$ PROVE: Perimeter of $ABCD = 4AB$		
Statements		Reasons <i>A D</i>
1.	$\overline{AB} \cong \overline{BC}, \overline{BC} \cong \overline{CD}, \overline{CD} \cong \overline{AD}$	1
2.	AB = BC, BC = CD, CD = AD	2
3.	AB = CD, AB = AD	3
4.	Perimeter of $ABCD = AB + BC + CD + AD$	4
5.		5. Substitution Property of Equality
6.		6. Simplify.

3. GIVEN: $\angle 1$ and $\angle 2$ are complementary. $\angle 1 \cong \angle 3$, $\angle 2 \cong \angle 4$ **PROVE:** $\angle 3$ and $\angle 4$ are complementary.

In Exercised 4-5, write a two-column proof.

4. Use the given information to draw a diagram and then prove the statement. **GIVEN:** $\overline{NO} \cong \overline{PQ}$, *M* is the midpoint of \overline{NO} . *M* is the midpoint of \overline{PQ} . **PROVE:** $\overline{NM} \cong \overline{PM}$

5. GIVEN: $\angle LPM \cong \angle MNO$, $\angle MNO \cong \angle MPO$ **PROVE:** $\overline{MP} \perp \overline{LO}$

