\qquad

In Exercises 1-3, complete the proof.

1. GIVEN: $\angle A B C \cong \angle C B D, m \angle C B D=50^{\circ}, m \angle C B E=100^{\circ}$ PROVE: $m \angle A B C \cong \angle D B E$

Statements
Reasons

1. $\angle A B C \cong \angle C B D, m \angle C B D=50^{\circ}$, $m \angle C B E=100^{\circ}$
2. $\quad m \angle C B E$
3. $50^{\circ}+m \angle D B E=100^{\circ}$
4. $m \angle D B E=50^{\circ}$
5. $m \angle C B D=$ \qquad
6. \qquad
7. $\angle A B C \cong \angle D B E$
8. Angle Addition Postulate
9. \qquad
10. \qquad
11. Substitution Property of Equality
12. Definition of congruent angles
13. \qquad
14. The lengths of the sides of quadrilateral $A B C D$ are equal. Prove that the perimeter of $A B C D$ is equal to $4 A B$.
GIVEN: $\overline{A B} \cong \overline{B C}, \overline{B C} \cong \overline{C D}, \overline{C D} \cong \overline{A D}$
PROVE: Perimeter of $A B C D=4 A B$

Statements	Reasons
1. $\overline{A B} \cong \overline{B C}, \overline{B C} \cong \overline{C D}, \overline{C D} \cong \overline{A D}$	1. -
2. $A B=B C, B C=C D, C D=A D$	2.
3. $A B=C D, A B=A D$	3.
4.Perimeter of $A B C D=A B+B C+$ $C D+A D$	4.
5. -	5. Substitution Property of Equality
6.	6. Simplify.

3. GIVEN: $\angle 1$ and $\angle 2$ are complementary.

$$
\angle 1 \cong \angle 3, \angle 2 \cong \angle 4
$$

PROVE: $\angle 3$ and $\angle 4$ are complementary.

Statements

Reasons

1. $\angle 1$ and $\angle 2$ are complementary.
2. $m \angle 1+m \angle 2=90^{\circ}$
3. $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$
4. $m \angle 1=m \angle 3, m \angle 2=m \angle 4$
5. $m \angle 3+m \angle 2=90^{\circ}$
6. $m \angle 3+m \angle 4=90^{\circ}$
7. $\angle 3$ and $\angle 4$ are complementary.
8.
9.
10.
11. \qquad
12. \qquad
13.
14. \qquad

In Exercised 4-5, write a two-column proof.

4. Use the given information to draw a diagram and then prove the statement.

GIVEN: $\overline{N O} \cong \overline{P Q}, M$ is the midpoint of $\overline{N O} . M$ is the midpoint of $\overline{P Q}$.
PROVE: $\overline{N M} \cong \overline{P M}$
5. GIVEN: $\angle L P M \cong \angle M N O$,

PROVE: $\frac{\angle M N O \cong \angle M P O}{M P \perp}$

